
Distribution authorized to U.S. Government agencies and their SETA contractors only (Proprietary Information, 6 May 2019). Other requests for this document shall be
referred to DARPA Public Release Center. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author(s)/presenter(s)
and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Winning the war in memory using
CHERI capabilities

Robert N. M. Watson, Simon W. Moore, Peter G. Neumann, Peter Sewell
Hesham Almatary, Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Khilan Gudka, Alexandre Joannou, Robert Kovacsics, Ben Laurie, A.Theo Markettos,

J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, Kyndylan Nienhuis,
Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi, Peter Sewell,

Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International
SILM Summer School, Inria, Rennes – 11 July 2019

Motivation – The Eternal War in Memory*

• Many security vulnerabilities exploit memory safety violations

2

* Title based on Oakland 2013 paper: SoK: Eternal War in Memory, László Szekeres, Mathias Payer, Tao Wei, Dawn Song

3

source: http://xkcd.com
/1354/

Example 1

4

source: http://xkcd.com
/1354/

5

source: http://xkcd.com
/1354/

Went wrong? How do we do better?

• Classical answer:

• The programmer forgot to check the bounds of the data structure
being read

• Fix the vulnerability in hindsight – one line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

• Our answer:

• Preserve bounds information during compilation

• Use hardware (CHERI processor) to dynamically check bounds
with little overhead and guarantee pointer integrity & provenance

6

Example 2: how to reduce the attack surface?

• The software attack surface keeps getting bigger

• Applications just keep getting larger

• Huge libraries of code aid rapid program development

• Everything is network connected

• This aids the attacker: an expanding number of ways to break in

7

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

Application-level least privilege

Principles CHERI helps to uphold

• The principle of intentional use

• Ensure that software runs the way the programmer intended,
not the way the attacker tricked it

• Approach: guaranteed pointer integrity & provenance, with
efficient dynamic bounds checking

• The principle of least privilege

• Reduce the attack surface using software compartmentalization

• Mitigates known and unknown exploits

• Approach: highly scalable and efficient compartmentalization
9

CHERI HARDWARE ARCHITECTURE

10

A new type – the Capability

• CHERI Capability = bounds checked pointer with integrity

• Held in memory and in (new or extended) registers

11

address

permissions compressed bounds (top, bottom) s

64-bits

v

hidden validity/integrity tag

128-bits

A new type – the Capability

12

address

permissions compressed bounds (top, bottom) sv

virtual memory

critical property for security

monotonic decrease in rights guaranteed
by formally verified hardware

New Instructions

13

• Memory access

• Loads and stores via a bounds checked capability

• Exception if address is out of range

• Guarded manipulation of capabilities

• Decrease bounds

• Decrease permissions

• Adjust the address

• Extract/test fields

Sealed Capabilities for Compartmentalization

• Sealed capabilities are none dereferencable capabilities

• Have to be unsealed (e.g. inside a compartment) before use

14

address

permissions compressed bounds s

64-bits

v

object type (24-bits)

128-bits

object type

more compressed bounds
sealed:
S=1

Calling a Compartment

15

executable
object-type

sealed capability

non-executable
object-type

sealed capability

address

perms bounds 0

address

perms bounds 0

Sealed code capability

Sealed data capability

PC capability

Default data capability=

CCall

SOFTWARE MODELS

16

Background to CHERI Software Models

• Machine-level capabilities and instructions provide the building
blocks on which new abstract capability software models can be
built

• Analogy:

• Machine-level translation lookaside buffer (TLB) and page table
walker enables the OS to represent virtual memory

• Virtual memory can then be used in different ways to impose
new security features, e.g. guard pages

17

Low-level CHERI software models

• Source and binary compatibility: C-language idioms, multiple ABIs

• Unmodified code: Existing code runs without modification

• Hybrid code: E.g., used in return addresses, for annotated data/code
pointers, for specific types, stack pointers, etc.

… But “hybrid” is a spectrum: many different choices for manual and
automatic selection of integers vs. capabilities, API and ABI impacts

• Pure-capability code: Ubiquitous data- and data-pointer protection. Not
interoperable with legacy code due to changed pointer size.

• CHERI Clang/LLVM compiler prototype generates code for all three
18

More compatible Safer

Unmodified
All pointers are
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are capabilities

Pure Capability Code ® Needs CheriABI

• CheriABI

• Compatibility layer to the OS

• Allows capabilities to be used in place of pointers

• A bit like a 32-bit compatibility layer for a 64-bit OS

• Result – we can now recompile large corpuses of C code into a
pure capability form with virtually no code changes

• Award winning paper at ASPLOS 2019:
CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-time Environment

19

Capabilities for Bounds Checking and Integrity
• Pure capability code – all pointers become capabilities

• Compiler + malloc() derive bounds for objects

• Strong pointer provenance and integrity properties (validity tag)

20

Data

Heap Stack

MonotonicityIntegrity and
provenance Bounds

• Mitigates buffer overflow/overread vulnerabilities with no code change!

Capabilities for Control-Flow Robustness

• Capabilities used for return addresses

• Integrity bit mitigates code reuse attacks:

• ROP – Return Oriented Programming

• JOP – Jump Oriented Programming

• Much better than current statistical technique
ASLR (Address Space Layout Randomisation)

21

String buffer

Malicious
data

$pc

$ra

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Summary of Capability Protections

22

Valid userspace pointer set – pointers not generated using derivation rules
are not part of the valid provenance tree and will not be dereferenceable

Pointer privilege reduction – capabilities allow pointers to carry specific
privileges, which can be minimized with OS, compiler, and linker support

Foundation for higher-level models such as software compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance Bounds

Compartmentalisation

• Compartment can be described using a sealed pair of capabilities:
(program counter, default data capability)

• CCall providing the domain transition

• Allows a number of abstract software models:

• Library compartmentalisation, e.g. of risky or legacy (non-cap.) code

• Process-based compartmentalisation within an application can be
replaced by much more efficient capability-based protection

• Same virtual address space (more efficient TLB usage)

• Very similar software model (easy to port code)

23

RESULTS

24

First we made it work – Demo tablet platform

25

Red Team Evaluation by MIT Lincoln Labs

26

CHERI mitigates
Heartbleed exploit!

Memory-protection performance

27

L1 cache miss rate for CHERI 256, CHERI-128, and MIPS

Collection of low
pointer-density
benchmarks from
MiBench

High pointer-density
benchmarks

(M) MiBench

(O) Olden

(J) Octane JavaScript

CheriABI: A full pure-capability OS userspace
• Complete memory- and pointer-safe FreeBSD C/C++ userspace

• System libraries: crt/csu, libc, zlib, libxml, libssl, …

• System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …

• Applications: PostgreSQL, nginx; bringing up WebKit (C++)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots

• Compiler, allocators, run-time linker, etc., refine bounds and perms

• Trading off privilege minimization, monotonicity, API conformance

• Typically in memory management – realloc(), mmap() + mprotect()
28

Evaluating memory-protection compatibility

• Prototyping approach:
• “pure-capability” C compiler (Clang/LLVM)
• full OS (FreeBSD) that use capabilities for all explicit or

implied userspace pointers
• Observations:
• Little or no software modification (BSD base system +

utilities)
• Small changes to source files for 34 of 824 programs, 28 of

130 libraries
• Overall: modified ~200 of ~20,000 user-space C files/header

29

CHERI vs. Process-based Compartmentalization
(Early IPC ping-pong microbenchmark results)

30

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000 1000000

C
yc

le
s

on
 F

PG
A

Payload in bytes

Co-process vs. pipe(2) ping-ping
Memory-copy semantics with multi-byte payload

Co-process pipe(2)

Low
er is better

99% 99%

68%

42%

21%

89%

98%

Reduction in cycles for
round trip

The fine print: Cycles include IPC setup, amortised over
10,000 iterations of the IPC loop. Both processes use the
pure-capability ABI using 256-bit capabilities. 272-entry
TLB, 32K L1 I-Cache, 32K L1 D-Cache, 256K L2 Cache.

CURRENT RESEARCH DIRECTIONS

31

Generalising CHERI support for many ISAs
• 64-bit MIPS for pragmatic reason: needed a 64-bit RISC ISA in late 2010

• Generic CHERI support doesn’t mean that all implementations need to be
identical

• E.g. portable virtual-memory semantics and UNIX process model
despite (quite) different MMUs across architectures

• Architectural abstraction: Lift CHERI properties above ISA

• Architectural localization: E.g., ISA choices, opcode approaches, exceptions,
page tables, … → architecture-specific specifications

• Currently working on CHERI-ARM and CHERI-RISC-V variants

• Currently exploring interaction with virtualization for servers
32

Portability implications for software
• CHERI Clang/LLVM

• Modest pointer/capability abstraction improvements in front-end and IR

• Adapt target back-ends to teach them about capability code generation

• Optimize for architecture-specific code generation

• Optimize for available microarchitectures

• CheriBSD (CHERI support in FreeBSD)

• More clear machine-independent / machine-independent split

• Shift to hybrid capability C in the kernel to improve machine independence

• Various MD kernel updates: boot code, exceptions, PMAP, …

• Clean up APIs, header separation, architecture abstraction

• Various userspace updates: rtld, libcheri, CRT/CSU, …
33

Many other research questions

• Can we efficiently impose CHERI protection mechanisms on I/O
devices and accelerators?

• See Thunderclap work on I/O security (http://thunderclap.io/)

• Does CHERI make managed languages (e.g. Rust) safer or faster
(e.g. through efficient dynamic checks)?

• Does fine-grained compartmentalisation help mitigate fault injection
attacks?

• Can CHERI help to mitigate speculative execution attacks?

• Can CHERI be used for enclaves?

34

http://thunderclap.io/

Conclusions
• CHERI provides the hardware with more semantic knowledge of what the

programmer intended

• Toward the principle of intentional use

• Efficient pointer integrity and bounds checking

• Eliminates buffer overflow/over-read attacks (finally!)

• Provide scalable, efficient compartmentalisation

• Allows the principle of least privilege to be exploited to
mitigate known and unknown attacks

• Large performance improvement over process-based compartmentalisation

• Working with industry to bring the technology to market
• Thanks to sponsors: DARPA, ARM, Google, EPSRC, HEIF, Isaac Newton Trust, Thales E-Security,

HP Labs
35

Simon.Moore@cl.cam.ac.uk
Computer Science & Technology

https://www.cl.cam.ac.uk/
research/security/ctsrd/

Additional Topics

1. Our verification and test strategy

2. How to build efficient tagged memory

3. Compressed capabilities

4. How CHERI helps to mitigate speculative execution attacks

5. : The Perils of Peripherals

36

