— e J—

S3: Modeling Fault Injection

S3.1 - Attacks

Cristofaro Mune
(c.mune@pulse-sec.com)

@pulsoid SILM Summer School, INRIA (2019)

Laser-Induced Fault Injection on Smartphone Bypassing the Secure
Boot

BADFET: Defeating Modern Secure Boot Using Second-Order Pulsed
Electromagnetic Fault Injection

Exploiting the DRAM
rowhammer bug to gain kernel
privileges

Escalating Privileges in Linux using Voltage Fault Injection

What do they have in common?

(@ault Injection on Smartphone Bypassing the Secure

BOO

BADFET: Defeating Modern‘Secure Booft' Using Second-Order Pulsed
CElectromagneticFault Injection

Exploiting the DRAM
dowhammerbug to gaindernel
privileges

EscalatingPrivileges in Linux using Fault Injection

C L >

Injection Technique Goal

* Naming only connects:
- Injection technique and

- Achieved Goal

N

Voltage —

Clock —

EM —

Fl technique

* Naming may suggest that entire attack chain:
- fully depends on the injection technique

- May not be valid with other injection technigues

* Questions:
- Is this true?
- Are we effectively naming attacks?

(Our) Definitions

“Introducing faults in a target to alter its intended
behavior.”

‘Susceptibility of a given hardware subsystem to a specific
fault injection technique, which has an impact on security.”

“Controlled environmental change”

An unintended alteration of a target, as a consequence of a glitch
triggering a vulnerability.”

Fl Attack Anatomy

e Goal: What attacker wants to achieve
- Code execution

Target
IE

-

HW Vulnerability

When triggered it leads to faults
Located in HW

Can only be entirely resolved in HW

Reviews insufficient for identification (Physical parameters)

@

N

Voltage —

Clock —

EM —

FI Technique

* Injection: technique used for “triggering” the HW vulnerability
- Physical level

- Induced current
INn circuits net

* Physics: ™71 Coil's
! Coll /magneticfield

* Logic: Eddy current's
¢ magnetic field
- Logic state may P — -
change (closed Eddy ~ //
S op en) currentgl___..»»»' A - /
=4 //4—— Conductive
- A material

System: Wrong values represented/stored/propagated

13

* Physics:
- Affects available carriers

* Logic:

- Logic state may change
(closed - open)

System: Wrong values represented/stored/propagated

14

| Target
® o

* Where are the glitch parameters?
- Localization (EM-FI, Optical), Duration, Voltage Thresholds,...

* How the physical effects are turned into a successful attack?

* Don’t we need SW to exploit?
- Shellcodes, Memory “massaging”, Payloads, Protocols...

@@

Glitched sub-system,
Parameters

* The environmental change for triggering vulnerabilities

* HOW the injection is performed
“Location”: Sub-system, VCC rail, Area, Time window,...

- Parameters: Duration, Intensity, Repetitions,...
16

@@

“Unintended behavior”

* Fault: the “changes” introduced by the glitch

* Can occur at multiple levels
- Physical, Logic, Architecture, Software, ...

* Multiple different faults may occur, that:
- Leave the system unstable

- Have no visible effect
- Have no “attack-relevant” effect

* Which are the “interesting” faults?
- I.e. that can be leveraged for a successful attack

18

@ - w

,_T

Fault model

* Fault Model: defines the relevant set of faults
Faults that can be leveraged into an exploit
E.g.: faults that cause instruction skipping
« Can be multiple. At multiple levels.

@ off - @

* Exploit: leverages faults within the fault model
- Preparation: Image layout, Shellcodes, staging,...

- Execution: Fault in adjacent rows - Memory de-dup = Shared
page - Cross-VM attacks

In some cases injection does not require physical access:
- SW may be used for “activating” injection

Injection still occurs at physical level

“Activation” performed by SW:
- By controlling HW subsystems/interfaces

Examples:
- CLKSCREW:
« SW manipulates Clock + Voltage (Injection) subsystems via DFVS
- Rowhammer:

« SW causes EM interference (Injection) between memory cells by
continuously accessing rows

* You can do this from Javascript!
21

SW/HW

* Activation: HOW the technigue is controlled
- HW activation: Physical VCC/EM/CLK injection, ...
- SW activation: via DVFS, SW memory reads, PLCs (Stuxnet?)

SW/HW
Voltage —
S0 Fault model
EM —
HW Vulnerability
N Glitch
parameters

Fl technique

Applications

e Support for discussing:
- Attacks
- Countermeasures

* Visualization:
- Attack strategies
- Thought process

* |dentification:
- Commonalities and differences in attacks/defenses
Research trends

SW/HW

o O 'i>'5>ﬁ>

SW (Detect):
Redundant checks /

HW (Prevent): . operations
Protecting DVFS HW (Detect): HW (Detect): B
registers HW (Prevent): Voltage ECC RAM SW (Mitigate):
Laser mesh detectors Random delayS
EM shielding Optical
sensors

* Observations:
- SW countermeasures: depend on FM, focus on exploit

- HW countermeasures: (mostly) FM independent, focus before
exploit

@@ [@

!

Instruction

HW: FPGA +
Current Amplifier

Voltage

SoC Main VCC
rail.

Syscall
Execution.
Undervoltage.
Glitch
parameters

Linux Ubuntu
16.04.
Unprivileged
user.

: Modify
corruption instruction

(from FM)

to assign PC

value
Register _ '
cor?tent Exploit (part 1): Arbitrary
Instruction Load shellcode in kernel code
processing. M E TGN exec
Memory

Content.

Exploit (part 2):

SW-activated

DVFS
oltage

Vulnerable wesaaas ’e
— W, — @ B

HW-activated \

May different ac@...
...trigger the@u I ner@

Conclusions

* Fl attacks much more than:
- Select a technique and..

- “Magic happens”

* Proper modeling may allow for:
- Improving methodologies
- Countermeasures design:
» Scope, placement, Relevance/effectiveness
- Creating new attacks ‘modularly’

» ldentify uncovered attack vectors
* New creative attacks for known injection techniques
- Injection-independent attacks

30

=)

I—————— N

/ —, ’ — —

Ny-.r

S3: Modeling Faulrl/n‘ie_gli()gw

S3.2 - Fault Models K\ = -

Cristofaro Mune
(c.mune@pulse-sec.com)

@pulsoid SILM Summer School, INRIA (2019)

@ @1 =@

SW/HW

@

,_/l\

Fault model

Which faults are useful and exploitable?

Fault Models

Control flow corruption
by “skipping instructions”

ol e 5=

ADD
Mou
Mov
BL

LD
Laa

Data corruption
by “flipping bits”

BEQ

) 33 B85 45 ¥F9 02

ol i =

loc_DA3%4
LDR

R6, [R6,R18]

R11, R11, #6x20

R6, [R4,%0x110]

Security Measures bypass

One fault model for each attack

50 3C
3D 64 SI
14 DE S
C 62 91 95

¥ 4B B!

1 BS 86 C1

Cryptographic key extraction

SF

OB

E4 79
AE OC
15 BA

1D 9E

Layer

Control Flow, Execution

Data Flow

Software)
Instructions

“Hardware” :

Micro-Architecture

1)

OTP, JTAG, CPUs,... Subsystem*
Logical gates, Circuit

Memory Cells, Flip Flops

L)

Physical

*Extension to [2018]: Yuce, Schaumont, Witteman

* Multiple faults occurs at the same time:
- With the same technique

- With one single glitch
- At multiple layers and locations in the system

* Each fault, at each layer, can be potentially exploitable

A 4

* Multiple attacks possible at the same time
- for the same Goal
- with the same injection technique
- By selecting different [fault model:exploitation]

37

Layer

Control Flow, Execution
Data Flow
Software .
Instructions
“Hardware”

OTP, JTAG, CPUs,...

Logical gates,
Memory Cells, Flip Flops

1)

Micro-Architecture

>

Subsystem

)

Circuit

)

Physical

Fault Model

Instruction Skipping

Data corruption

A

Root Cause

38

A generic one: ‘instruction corruption™

Single-bit (MIPS)

addi S$tl1l, S$tl, 8 00100001001010010000000000001000
addi $tl1, S$tl, O 00100001001010010000000000000000
Multi-bit (ARM)

ldr wl, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
* Limited control over which bit(s) will be corrupted

* Also includes other fault models as sub-cases (e.g. instruction skipping)

*[2016]: Timmers, Spruyt, Witteman

39

* ARMS32 has an interesting ISA

* Program Counter (PC) is directly accessible

Valid ARM instructions

MOV r/,rl
EOR r0O,rl

IDR r0, [rl]
LDMIA r0, {rl}

00000001
00000001
00000000
00000010

01110000
00000000
00000000
00000000

10100000
00100000
10010001
10010000

11100001
11100000
11100101
11101000

Corrupted ARM instructions may directly set PC*

mov (pc) r1
EOR(pc) rl
LDR(pc) [rl]

LDMIA rO0, {rl,

00000001
00000001
00000000
00000010

11110000
11110000
11110000
10000000

10100000
00101111
10010001
10010000

11100001
11100000
11100101
11101000

Attack variations (SP-control) also affect other architectures

40

Layer

Control Flow, Execution
Data Flow
Software .
Instructions
“Hardware”

OTP, JTAG, CPUs,...

Logical gates,
Memory Cells, Flip Flops

1)

Micro-Architecture

>

Subsystem

)

Circuit

)

Physical

Fault Model

Instruction Modification

A

Root Cause

41

ANY memory read can be redirected to PC (or SP)

- ANY memcpy()

PC (or SP) immediately assigned with content from memory
- Exploited DIRECTLY from Instruction Layer

g

Following SW NOT executed

- SW countermeasures fully bypassed

A new target for FlI:
- Security checks

- Crypto algorithms

Code Execution

42

[User]: All registers set to target memory address

.
[User]: Syscall
& s

[Kernel]: MOV instruction modified (operand)

$

[Kernel]: PC becomes destination register

$

Arbitrary PC control

43

...more to come...

(session 4)

44

Using Fault Models

* Fault model focuses on actual effects:
- Attempts to model real faults as accurately as possible

- Attempts to explain the ‘how’ and ‘why’ of the fault for:

 understanding fault propagation
* inferring system behavior
- System complexity limits this approach

HOW and WHY do faults happen?

46

* Fault model assumes interesting effects:
- Measurements performed for verification

- Focus only on ‘if’ fault occurs and ‘how often’
- Limited support for root cause identification:

* No attempt to establish causation
- But provides exactly what is needed for an afttack...

g

THIS happens. With THIS frequency

47

Assume a fault model for a specific layer:
- E.g. Instruction corruption
* (for SP control)

* Create an exploit, assuming that such faults occur:
- E.g. ROP based exploit

Detect success:
- Measure frequency and useful related data

If you have:
- ONE success, you have an attack.

- Multiple successes, you may have a predictable attack.

ONE may be enough

48

Fault root cause is irrelevant

Injection technique is (mostly) irrelevant
- Only the actually introduced faults are

Understanding the fault propagation is irrelevant

What happens at other layers is irrelevant

Attack relevant:
- System remains stable
- Fault within chosen fault model, shows up in the desired layer
- Exploit triggered
- 3Success rate

49

Fault model predicts faults actually happening at the
chosen layer?

YES

h 4

Attack can be performed.

50

Considerations

Detection usually happens after exploit:
- Not at fault occurrence

$

Detection DEPENDS on exploit side effects
- Which DEPENDS on Fault Model

$

Important results may be missed if detection not aligned with
fault model

Example:
- We may have been missing decades of instruction corruptions.

- Detection was only focused on results of “instruction skipping”

attacks...
52

Two attacks:

- A) 1% success rate, 10 attempts per minute
B) 0,1% success rate, 1000 attempts per minute

* Which is better?
- A) yields success after 10 minutes in average
B) yields success after 1 minute in average

Success rate has no attack effectiveness meaning:
- Only gives fault frequency

Better:
- Complement with attack speed, or
Provide average time for success

Conclusions

* ‘Offensive’ fault models:
Focus on measured effects only

Do not require understanding physics and system-level
- Allow exploitation of faults at multiple layers

* New attacks may be possible:
- With the same injection technique
By assuming a different Fault Model

55

* “Make sure to detect successful attacks.”

- Detection depends on Fault Model and Exploit
- You may be missing so many interesting faults...for years.

* “Success rate alone is insufficient for assessing attack
effectiveness”:

- Provide attack speed or average time for successful attacks

* “Faults are enabling attacks. Not how they are injected ™
- Attacks may be designed independently of injection techniques

56

\\U” |

Cristofaro Mune

Product Security Consultant

c.mune@pulse-sec.com

mailto:c.mune@pulse-sec.com

