
Cristofaro Mune

(c.mune@pulse-sec.com)

@pulsoid

S3: Modeling Fault Injection

S3.1 - Attacks

SILM Summer School, INRIA (2019)

Naming FI attacks

What do they have in common?

Naming FI attacks

Injection Technique Goal

Observation

• Naming only connects:

- Injection technique and

- Achieved Goal

Injection

FI technique

Clock

EM

…

Voltage

Goal

Reflection

• Naming may suggest that entire attack chain:

- fully depends on the injection technique

- May not be valid with other injection techniques

• Questions:

- Is this true?

- Are we effectively naming attacks?

(Our) Definitions

Fault Injection

“Introducing faults in a target to alter its intended

behavior.”

Other definitions

8

“Susceptibility of a given hardware subsystem to a specific

fault injection technique, which has an impact on security.”

Vulnerability (FI)

“Controlled environmental change”

Glitch

An unintended alteration of a target, as a consequence of a glitch

triggering a vulnerability.”

Fault (informal)

FI Attack Anatomy

Goal

• Goal: What attacker wants to achieve

- Code execution

- …

Goal

Root cause: HW Vulnerability

Target

HW Vulnerability

• When triggered it leads to faults

• Located in HW

• Can only be entirely resolved in HW

• Reviews insufficient for identification (Physical parameters)

Injection

Injection

FI Technique

Clock

EM

…

Voltage

• Injection: technique used for “triggering” the HW vulnerability

- Physical level

Example: EM-FI

• Physics:

- Induced current
in circuits net

• Logic:

- Logic state may
change (closed
→ open)

13

System: Wrong values represented/stored/propagated

Example: Optical

14

• Physics:

- Affects available carriers

• Logic:

- Logic state may change
(closed → open)

System: Wrong values represented/stored/propagated

Is this enough?

TargetInjection Goal

• Where are the glitch parameters?

- Localization (EM-FI, Optical), Duration, Voltage Thresholds,…

• How the physical effects are turned into a successful attack?

• Don’t we need SW to exploit?

- Shellcodes, Memory “massaging”, Payloads, Protocols…

Glitch: triggering vulnerabilities

• The environmental change for triggering vulnerabilities

• HOW the injection is performed

- “Location”: Sub-system, VCC rail, Area, Time window,…

- Parameters: Duration, Intensity, Repetitions,…

16

Glitch

Glitched sub-system,

Parameters

TargetInjection Goal

Fault

Fault

“Unintended behavior”

• Fault: the “changes” introduced by the glitch

• Can occur at multiple levels

- Physical, Logic, Architecture, Software,…

Glitch TargetInjection Goal

Not all faults are created equal…

• Multiple different faults may occur, that:

- Leave the system unstable

- Have no visible effect

- Have no “attack-relevant” effect

• Which are the “interesting” faults?

- i.e. that can be leveraged for a successful attack

18

Fault Model

Fault model

F
M

FaultGlitch TargetInjection Goal

• Fault Model: defines the relevant set of faults

- Faults that can be leveraged into an exploit

- E.g.: faults that cause instruction skipping

• Can be multiple. At multiple levels.

Exploit

Exploit

• Exploit: leverages faults within the fault model

- Preparation: Image layout, Shellcodes, staging,…

- Execution: Fault in adjacent rows → Memory de-dup → Shared
page → Cross-VM attacks

F
M

FaultGlitch TargetInjection Goal

“Activation” (?)

• In some cases injection does not require physical access:

- SW may be used for “activating” injection

• Injection still occurs at physical level

• “Activation” performed by SW:

- By controlling HW subsystems/interfaces

• Examples:

- CLKSCREW:

• SW manipulates Clock + Voltage (Injection) subsystems via DFVS

- Rowhammer:

• SW causes EM interference (Injection) between memory cells by
continuously accessing rows

• You can do this from Javascript!

21

Activation

Activation

SW/HW

• Activation: HOW the technique is controlled

- HW activation: Physical VCC/EM/CLK injection, …

- SW activation: via DVFS, SW memory reads, PLCs (Stuxnet?)

Exploit

F
M

FaultGlitch TargetInjection Goal

A reference model

TargetInjection Fault

FI technique

Clock

EM

…

Voltage

Activation

SW/HW

Glitch

Glitch

parameters

Exploit

HW Vulnerability

Fault model

Goal

F
M

Applications

Possible uses

• Support for discussing:

- Attacks

- Countermeasures

• Visualization:

- Attack strategies

- Thought process

• Identification:

- Commonalities and differences in attacks/defenses

- Research trends

Visualizing countermeasures

TargetInjection FaultActivation

SW/HW

Glitch Exploit Goal

F
M

• Observations:

- SW countermeasures: depend on FM, focus on exploit

- HW countermeasures: (mostly) FM independent, focus before
exploit

HW (Prevent):

Laser mesh

EM shielding

HW (Detect):

Voltage

detectors

Optical

sensors

HW (Prevent):

Protecting DVFS

registers

HW (Detect):

ECC RAM

SW (Detect):

Redundant checks /

operations

SW (Mitigate):

Random delays

Visualizing attacks: Linux privilege escalation

TargetInjection FaultActivation

HW

Glitch Exploit Goal

F
M

Voltage
SoC Main VCC

rail.

Syscall

Execution.

Undervoltage.

Glitch

parameters

HW: FPGA +

Current Amplifier

Register

content.

Instruction

processing.

Memory

Content.

Exploit (part 2):

Modify

instruction

(from FM)

to assign PC

value

Exploit (part 1):

Load shellcode in

memory

Linux Ubuntu

16.04.

Unprivileged

user.

Instruction

corruption

Arbitrary

kernel code

exec

Creating “new” attacks?

Vulnerable
HWGlitch Fault

SW-activated

VCC

DVFS

Voltage

May different activations…

HW-activated

…trigger the same vulnerability?

Conclusions

Conclusions

• FI attacks much more than:

- Select a technique and..

- “Magic happens”

• Proper modeling may allow for:

- Improving methodologies

- Countermeasures design:

• Scope, placement, Relevance/effectiveness

- Creating new attacks ‘modularly’

• Identify uncovered attack vectors

• New creative attacks for known injection techniques

- Injection-independent attacks

30

Cristofaro Mune

(c.mune@pulse-sec.com)

@pulsoid

S3: Modeling Fault Injection

S3.2 - Fault Models

SILM Summer School, INRIA (2019)

Question

TargetInjection FaultActivation

SW/HW

Glitch Exploit

Fault model

Goal

F
M

Which faults are useful and exploitable?

Fault Models

Traditional fault models

Control flow corruption

by “skipping instructions”

Data corruption

by “flipping bits”

One fault model for each attack

Security Measures bypass Cryptographic key extraction

Reality: One glitch → Multiple faults

Fault

Physical

Circuit

Micro-Architecture

Subsystem*

Software

“Hardware”

OTP, JTAG, CPUs,…

Logical gates,

Memory Cells, Flip Flops

ExecutionControl Flow,

Data Flow

Instructions

Layer

*Extension to [2018]: Yuce, Schaumont, Witteman

FaultS (!)

• Multiple faults occurs at the same time:

- With the same technique

- With one single glitch

- At multiple layers and locations in the system

• Each fault, at each layer, can be potentially exploitable

• Multiple attacks possible at the same time

- for the same Goal

- with the same injection technique

- By selecting different [fault model:exploitation]

37

38

Traditional Fault Models

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

OTP, JTAG, CPUs,…

Logical gates,

Memory Cells, Flip Flops

ExecutionControl Flow,

Data Flow

Instructions

Instruction Skipping

Fault ModelLayer

Data corruption

R
o

o
t
C

a
u

s
e

A new fault model

Remarks

• Limited control over which bit(s) will be corrupted

• Also includes other fault models as sub-cases (e.g. instruction skipping)

39

A generic one: “instruction corruption”*

*[2016]: Timmers, Spruyt, Witteman

Controlling PC (or SP)

40

• ARM32 has an interesting ISA

• Program Counter (PC) is directly accessible

Attack variations (SP-control) also affect other architectures

Valid ARM instructions

Corrupted ARM instructions may directly set PC*

41

Fault Model

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

OTP, JTAG, CPUs,…

Logical gates,

Memory Cells, Flip Flops

ExecutionControl Flow,

Data Flow

Instructions Instruction Modification

Fault ModelLayer

R
o

o
t
C

a
u

s
e

Execution primitives…out of thin air

42

• ANY memory read can be redirected to PC (or SP)

- ANY memcpy()

• PC (or SP) immediately assigned with content from memory

- Exploited DIRECTLY from Instruction Layer

• Following SW NOT executed

- SW countermeasures fully bypassed

• A new target for FI:

- Security checks

- Crypto algorithms

- ...

Code Execution

43

Application: Kernel exec via FI

[User]: All registers set to target memory address

Arbitrary PC control

[User]: Syscall

[Kernel]: MOV instruction modified (operand)

[Kernel]: PC becomes destination register

…more to come…

(session 4)

44

Using Fault Models

Fault models: the Analytical approach

• Fault model focuses on actual effects:

- Attempts to model real faults as accurately as possible

- Attempts to explain the ‘how’ and ‘why’ of the fault for:

• understanding fault propagation

• inferring system behavior

- System complexity limits this approach

46

HOW and WHY do faults happen?

Fault models: a Descriptive approach

• Fault model assumes interesting effects:

- Measurements performed for verification

- Focus only on ‘if’ fault occurs and ‘how often’

- Limited support for root cause identification:

• No attempt to establish causation

- But provides exactly what is needed for an attack…

47

THIS happens. With THIS frequency

Practical Exploitation

• Assume a fault model for a specific layer:

- E.g. Instruction corruption

• (for SP control)

• Create an exploit, assuming that such faults occur:

- E.g. ROP based exploit

• Detect success:

- Measure frequency and useful related data

• If you have:

- ONE success, you have an attack.

- Multiple successes, you may have a predictable attack.

48

ONE may be enough

From an attacker perspective…

• Fault root cause is irrelevant

• Injection technique is (mostly) irrelevant

- Only the actually introduced faults are

• Understanding the fault propagation is irrelevant

• What happens at other layers is irrelevant

• Attack relevant:

- System remains stable

- Fault within chosen fault model, shows up in the desired layer

- Exploit triggered

- Success rate
49

50

In summary…

Fault model predicts faults actually happening at the

chosen layer?

Attack can be performed.

YES

Considerations

Detecting success?

• Detection usually happens after exploit:

- Not at fault occurrence

• Detection DEPENDS on exploit side effects

- Which DEPENDS on Fault Model

• Important results may be missed if detection not aligned with
fault model

• Example:

- We may have been missing decades of instruction corruptions.

- Detection was only focused on results of “instruction skipping”
attacks…

52

Success rate…as attack effectiveness?

• Two attacks:

- A) 1% success rate, 10 attempts per minute

- B) 0,1% success rate, 1000 attempts per minute

• Which is better?

- A) yields success after 10 minutes in average

- B) yields success after 1 minute in average

• Success rate has no attack effectiveness meaning:

- Only gives fault frequency

• Better:

- Complement with attack speed, or

- Provide average time for success

Conclusions

Modeling

• ‘Offensive’ fault models:

- Focus on measured effects only

- Do not require understanding physics and system-level

- Allow exploitation of faults at multiple layers

• New attacks may be possible:

- With the same injection technique

- By assuming a different Fault Model

55

Observations

• “Make sure to detect successful attacks.”

- Detection depends on Fault Model and Exploit

- You may be missing so many interesting faults…for years.

• “Success rate alone is insufficient for assessing attack
effectiveness”:

- Provide attack speed or average time for successful attacks

• “Faults are enabling attacks. Not how they are injected”:

- Attacks may be designed independently of injection techniques

56

Cristofaro Mune

Product Security Consultant

Contacts

c.mune@pulse-sec.com

mailto:c.mune@pulse-sec.com

