S4: Fault Models for improved attacks
and defenses

Cristofaro Mune
(c.mune@pulse-sec.com)

@pulsoid SILM Summer School, INRIA (2019)

Case study:

Secure Boot

Evaluate multiple FI Secure Boot attacks:
- Independently of Injection technique

Goal: Bypass Secure Secure Boot
- l.e. a boot stage with a wrong signature is validated and executed

Each attack using a different:
- Fault Model

- Exploit

For each attack, we evaluate:
- what can be achieved
- which countermeasures may (or may not) be effective

@S -@"

SW/HW

||EEA>[>

@

,_/l\

Fault model

e We focus on how to use different faults and Fault Models

* Qut of scope: How the fault if is injected

- Irrelevant (for our purposes)

L

SW/HW

SW (Detect):
Redundant checks /

HW (Prevent): operations
Protecting DVFS _ HW (Detect): HW (Detect): B
registers HW (Prevent): Voltage ECC RAM SW (Mitigate):
Laser mesh detectors Random delayS
EM shielding Optical
sensors
* Focus:

- Fault Model and Exploit dependent countermeasures

Secure Boot:

“Instruction Skipping”

* Already covered by Niek!
- see session 2

* Fault Model: “You are able to selectively skip instructions”
- Located at “Execution” Level

* Exploit:
1. “Target conditionals”
2. “Affect Code Flow”
3. Wrong decision on boot stage validation

Software

Level

Execution

“Hardware”

1)

Instructions

1)

Micro-Architecture

1)

Subsystem

L)

Circuit

1)

Physical

Exploit

JE LA

Fault Model

‘tn >

Root Cause

* SW-based countermeasures:
Duplicate checks on “targeted conditionals”

Introduce random delays for more difficult targeting
- Code flow checks

* Notes:
- Applied after exploit phase: Detection and mitigation
Fully exploit dependent:

« Assume which piece of code is targeted
Local:

» Every targeted piece of code needs to be protected

Fully applicable

Software

Level

Fault Model Exploit

Execution

‘tn >

“Hardware”

1)

Instructions

1)

Micro-Architecture

1)

Subsystem

L)

Root Cause

Circuit

1)

Physical

Invalid
stage
\ N
SW-based
countermeasures

10

What if boot stages are
encrypted?

11

memcpy (I SRAM, I FLASH, I SIZE);
decrypt (SYM KEY, I SRAM, I SIZE);
memcpy (S _SRAM, S FLASH, S SIZE);

if (*(OTP SHADOW) >> 17 & 0xl) {
if (SHA256 (I _SRAM, I SIZE, I HASH)) {
while (1) ;

if (verify (PUBKEY, SiSRAM, IiﬂASH)) {
while (1) ;

The image is decrypted after it is copied and before it is verified!

* Encryption key needed for creating a malicious image

e Cannot be obtained via Fl...
- With the instruction skipping fault model

!

* Itiscommonly believed that:
- FI attacks alone cannot bypass an encrypted Secure Boot
- Encrypting boot stages is a valid FI countermeasure

That’s wrong
13

Secure Boot:

“Instruction Corruption”

* Fault Model: “Faults can modify instructions”

- (Not only prevent their execution)
Instruction Level Fault Model

* Instructions can be mutated:
- The “where” may be relevant (in some cases)
» E.g. Instructions are fetched encrypted/integrity checked

* Exploit (ARM32 for simplicity):
1. “Destination register can be changed during memory transfer”
2. PC can be populated with arbitrary data
3. PC jumps immediately to payload

System-on-a-Chip

CPU

Device is turned off.

Flash System-on-a-Chip DDR

Code
Pointers CPU

BL2 | S—

SRAM ROM

Replace encrypted BL1 with plain text code and pointers to SRAM.

Flash System-on-a-Chip

Code
o

BL2

SRAM

Code
Pointers

Glitch is injected after code copy and while pointers are being copied.

memcpy (I SRAM, I FLASH, I SIZE);
decrypt (SYM KEY, I SRAM, I SIZE);
memcpy (S _SRAM, S FLASH, S SIZE);

if (SHA256 (I _SRAM, I SIZE, I HASH)) {
while (1) ;

if(verify(PUBiKEY, SiSRAM, IiHASH)) {
while (1) ;

jump () ;

Glitch during pointers copy to assign a pointer to the program counter (PC).

19

memcpy (I SRAM, I FLASH, I SIZE);

((void *) ()) (pointer) ();

Control flow is hijacked. The decryption and verification of the image is bypassed!

We turn
ENCRYPTED SECURE BOOT

INto
PLAINTEXT UNPROTECTED BOOT

using
A SINGLE GLITCH AND NO KEY!

21

Software

Level

Fault Model

Execution

“Hardware”

1)

Instructions

1)

Instruction
CorruRtion

Micro-Architecture

1)

Subsystem

L)

Root Cause

Circuit

1)

Physical

Exploit

Goal

Invalid
stage
exec

22

Signature verification not performed
- Secure Boot defeated

Decryption not performed
- Plaintext code execution

Code execution achieved in verifying context

\Ug

ROM-level code execution

NOT possible with “Instruction Skipping” fault model
23

Level Fault Model Exploit Goal

Execution

1)

Invalid
I stage

Software : _
Instructions Instruction

“Hardware” COI‘I‘UEFIOI’]

Micro-Architecture

1)

Subsystem

L)

exec

Root Cause

Circuit

1)

Physical 24

Secure Boot:
“OTP Transfer”

Cannot be updated. - Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

-

Privileges change/drop during boot.

ROM code uses values from OTP for enabling/disabling security features.

memcpy (I SRAM, I FLASH, I SIZE); // 1. Copy image
memcpy (S _SRAM, S FLASH, S SIZE); // 2. Copy signature

W

if (*(OTP_SHADOW) >> 17 & 0x1) { // Check 1f enabled
if (SHA256 (I SRAM, I SIZE, I HASH)) { // 4. Calculate hash
while (1) ;

}
1f (verify (PUBKEY, S SRAM, I HASH)) { // 5. Verify image
while (1) ;
}
}
Jump () ; // 6. Jump to next image

Value stored in shadow registers. Populated by OTP Transfer.

Cannot be updated. _ Can be updated.

Bootloader bootloader

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

>

Privileges change/drop during boot.

OTP Transfer performed in hardware. BEFORE any ROM code is executed.

System-on-Chip

A typical System-on-Chip (SoC)

System-on-Chip

/ OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3
OTP BANK 4

OTP BANK ...

Contains a special OTP hardware block

System-on-Chip

/ OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3
OTP BANK 4

OTP BANK ...

CMD/RSP

OTP
() controller

Which is wrapped by a hardware controller

System-on-Chip

/ OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3

OTP BANK 4

OTP BANK ...

CMD/RSP

OTP
() controller

Shadow registers

Register 1
Register 2

Register 3

Register 4

Register ...

This controller copies the OTP values to dedicated registers after SoC reset

System-on-Chip

/ OTP phy Shadow registers \

OTP BANK 1 Register 1

OTP BANK 2 Register 2
CMD/RSP

OTP .
OTP BANK 3 (_) controller Register 3

OTP BANK 4 Register 4

OTP BANK ... Register ...

CPU is released from reset. Shadow registers can be read using system bus.

Where can we attack?

34

System-on-Chip

/ OTP phy Shadow registers

OTP BANK 1 Register 1

OTP BANK 2 Register 2

/CMD/RSP'

I OoTP .
OTP BANK 3 | | &~ controller Register 3
\

OTP BANK 4 Register 4

OTP BANK ... Register ...

Attack the bus between the OTP PHY and the OTP controller.

System-on-Chip

/ OTP phy Shadow registers \

OTP BANK 1 Register 1

OTP BANK 2 Register 2
‘cMD/RsP' \
OTP BANK 3 t o | Register 3
1

| controller

OTP BANK 4 Register 4

OTP BANK ... Register ...

Attack the OTP controller directly.

System-on-Chip

Shadow registers

/ OTP phy

OTP BANK 1

Register 1

\

OTP BANK 2

Register 2

OTP BANK 3 Register 3

CPU

OTP BANK 4 Register 4

OTP BANK ...

Register ...

Attack the bus between the OTP controller and the shadow registers.

* Fault Model: “Bit flips during HW bus transfers”
Logic Level

* Target:
- OTP configuration bits
- While being transferred into shadow registers
» Before CPU is released from resets

* Exploit:
1. OTP configuration bits can be modified
2. Wrong configuration in shadow registers
3. Secure boot code does not execute signature verification
 And possibly stage decryption

Level

Execution

1)

Software

Instructions

“Hardware” ;

Micro-Architecture

1)

Subsystem

L)

Circuit

1)

Physical

y

Root Cause

Fault Model

Secure

Bit flips in ||]|

boot

OTP transfer

A

disabled

39

Integrity of SW execution not affected

CPU subsystem not the target of the attack!
- OTP subsystem is targeted

Secure Boot disabled
- Incorrect configuration in shadow registers = used at boot

Attack BEFORE any SW execution occurs

g

Unlikely with previous Fault Models:
- Exploit faults affecting CPU sub-system at runtime

* Instruction representation/decode, Execution

40

Level

Execution

1)

Software .
Instructions

“Hardware” ;

Micro-Architecture

1)

Fault Model

EXp|O|t Goal

Secure

boot

Bit flips in
SUbSyStem OTP transfer ||]|
Circuit .
3
@ S
=
Physical

disabled

41

e SW-based countermeasures ineffective:
Integrity of SW control flow not affected

No SW is executed at fault injection time

e CPU-oriented countermeasures ineffective:
Exploit leverage faults in a different subsystem (OTP)

 HW-based countermeasures applicable:
- Only if targeting:
* The specific injection technique

* OTP subsystem
o more general, but localized

42

Conclusions

New fault models enable new attacks with:
- Different prerequisites

- Completely new impacts
- Improved effectiveness
- Challenging to be defended against

44

* Switching fault model may bypass entire classes of
countermeasures

* Effective defensive design should not assume:
- a specific Fault Model
- a specific Exploit

45

\\U” |

Cristofaro Mune

Product Security Consultant

c.mune@pulse-sec.com

mailto:c.mune@pulse-sec.com

