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Case study:

Secure Boot



Evaluate multiple FI Secure Boot attacks:
- Independently of Injection technique

Goal: Bypass Secure Secure Boot
- l.e. a boot stage with a wrong signature is validated and executed

Each attack using a different:
- Fault Model

- Exploit

For each attack, we evaluate:
- what can be achieved
- which countermeasures may (or may not) be effective
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Fault model

e We focus on how to use different faults and Fault Models

* Qut of scope: How the fault if is injected

- Irrelevant (for our purposes)
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SW/HW

SW (Detect):
Redundant checks /

HW (Prevent): operations
Protecting DVFS _ HW (Detect): HW (Detect): B
registers HW (Prevent): Voltage ECC RAM SW (Mitigate):
Laser mesh detectors Random delayS
EM shielding Optical
sensors
* Focus:

- Fault Model and Exploit dependent countermeasures



Secure Boot:

“Instruction Skipping”



* Already covered by Niek!
- see session 2

* Fault Model: “You are able to selectively skip instructions”
- Located at “Execution” Level

* Exploit:
1. “Target conditionals”
2. “Affect Code Flow”
3. Wrong decision on boot stage validation



Software

Level

Execution

“Hardware”

1 )

Instructions

1 )

Micro-Architecture

1 )

Subsystem

L)

Circuit

1 )

Physical

Exploit

JE LA

Fault Model

‘tn >

Root Cause




* SW-based countermeasures:
Duplicate checks on “targeted conditionals”

Introduce random delays for more difficult targeting
- Code flow checks

* Notes:
- Applied after exploit phase: Detection and mitigation
Fully exploit dependent:

« Assume which piece of code is targeted
Local:

» Every targeted piece of code needs to be protected

Fully applicable
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What if boot stages are
encrypted?
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memcpy (I SRAM, I FLASH, I SIZE);
decrypt (SYM KEY, I SRAM, I SIZE);
memcpy (S _SRAM, S FLASH, S SIZE);

if (*(OTP SHADOW) >> 17 & 0xl) {
if (SHA256 (I _SRAM, I SIZE, I HASH)) {
while (1) ;

if (verify (PUBKEY, SiSRAM, IiﬂASH)) {
while (1) ;

The image is decrypted after it is copied and before it is verified!




* Encryption key needed for creating a malicious image

e Cannot be obtained via Fl...
- With the instruction skipping fault model

!

* Itiscommonly believed that:
- FI attacks alone cannot bypass an encrypted Secure Boot
- Encrypting boot stages is a valid FI countermeasure

That’s wrong
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Secure Boot:

“Instruction Corruption”



* Fault Model: “Faults can modify instructions”

- (Not only prevent their execution)
Instruction Level Fault Model

* Instructions can be mutated:
- The “where” may be relevant (in some cases)
» E.g. Instructions are fetched encrypted/integrity checked

* Exploit (ARM32 for simplicity):
1. “Destination register can be changed during memory transfer”
2. PC can be populated with arbitrary data
3. PC jumps immediately to payload



System-on-a-Chip

CPU

Device is turned off.




Flash System-on-a-Chip DDR

Code
Pointers CPU

BL2 | S—

SRAM ROM

Replace encrypted BL1 with plain text code and pointers to SRAM.




Flash System-on-a-Chip

Code
o
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Code
Pointers

Glitch is injected after code copy and while pointers are being copied.




memcpy (I SRAM, I FLASH, I SIZE);
decrypt (SYM KEY, I SRAM, I SIZE);
memcpy (S _SRAM, S FLASH, S SIZE);

if (SHA256 (I _SRAM, I SIZE, I HASH)) {
while (1) ;

if(verify(PUBiKEY, SiSRAM, IiHASH)) {
while (1) ;

jump () ;

Glitch during pointers copy to assign a pointer to the program counter (PC).
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memcpy (I SRAM, I FLASH, I SIZE);

((void *) ()) (pointer) ();

Control flow is hijacked. The decryption and verification of the image is bypassed!



We turn
ENCRYPTED SECURE BOOT

INto
PLAINTEXT UNPROTECTED BOOT

using
A SINGLE GLITCH AND NO KEY!
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Signature verification not performed
- Secure Boot defeated

Decryption not performed
- Plaintext code execution

Code execution achieved in verifying context

\Ug

ROM-level code execution

NOT possible with “Instruction Skipping” fault model
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Secure Boot:
“OTP Transfer”



Cannot be updated. - Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

-

Privileges change/drop during boot.

ROM code uses values from OTP for enabling/disabling security features.



memcpy (I SRAM, I FLASH, I SIZE); // 1. Copy image
memcpy (S _SRAM, S FLASH, S SIZE); // 2. Copy signature

W

if (*(OTP_SHADOW) >> 17 & 0x1) { // Check 1f enabled
if (SHA256 (I SRAM, I SIZE, I HASH)) { // 4. Calculate hash
while (1) ;

}
1f (verify (PUBKEY, S SRAM, I HASH)) { // 5. Verify image
while (1) ;
}
}
Jump () ; // 6. Jump to next image

Value stored in shadow registers. Populated by OTP Transfer.




Cannot be updated. _ Can be updated.

Bootloader bootloader

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

>

Privileges change/drop during boot.

OTP Transfer performed in hardware. BEFORE any ROM code is executed.



System-on-Chip

A typical System-on-Chip (SoC)



System-on-Chip

/ OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3
OTP BANK 4

OTP BANK ...

Contains a special OTP hardware block



System-on-Chip

/ OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3
OTP BANK 4

OTP BANK ...

CMD/RSP

OTP
( ) controller

Which is wrapped by a hardware controller



System-on-Chip

/ OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3

OTP BANK 4

OTP BANK ...

CMD/RSP

OTP
( ) controller

Shadow registers

Register 1
Register 2

Register 3

Register 4

Register ...

This controller copies the OTP values to dedicated registers after SoC reset




System-on-Chip

/ OTP phy Shadow registers \

OTP BANK 1 Register 1

OTP BANK 2 Register 2
CMD/RSP

OTP .
OTP BANK 3 (_) controller Register 3

OTP BANK 4 Register 4

OTP BANK ... Register ...

CPU is released from reset. Shadow registers can be read using system bus.




Where can we attack?
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System-on-Chip

/ OTP phy Shadow registers

OTP BANK 1 Register 1

OTP BANK 2 Register 2

/CMD/RSP'

I OoTP .
OTP BANK 3 | | &~ controller Register 3
\

OTP BANK 4 Register 4

OTP BANK ... Register ...

Attack the bus between the OTP PHY and the OTP controller.




System-on-Chip

/ OTP phy Shadow registers \

OTP BANK 1 Register 1

OTP BANK 2 Register 2
‘cMD/RsP' \
OTP BANK 3 t o | Register 3
1

| controller

OTP BANK 4 Register 4

OTP BANK ... Register ...

Attack the OTP controller directly.



System-on-Chip
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CPU

OTP BANK 4 Register 4

OTP BANK ...

Register ...

Attack the bus between the OTP controller and the shadow registers.




* Fault Model: “Bit flips during HW bus transfers”
Logic Level

* Target:
- OTP configuration bits
- While being transferred into shadow registers
» Before CPU is released from resets

* Exploit:
1. OTP configuration bits can be modified
2. Wrong configuration in shadow registers
3. Secure boot code does not execute signature verification
 And possibly stage decryption
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Integrity of SW execution not affected

CPU subsystem not the target of the attack!
- OTP subsystem is targeted

Secure Boot disabled
- Incorrect configuration in shadow registers = used at boot

Attack BEFORE any SW execution occurs

g

Unlikely with previous Fault Models:
- Exploit faults affecting CPU sub-system at runtime

* Instruction representation/decode, Execution
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e SW-based countermeasures ineffective:
Integrity of SW control flow not affected

No SW is executed at fault injection time

e CPU-oriented countermeasures ineffective:
Exploit leverage faults in a different subsystem (OTP)

 HW-based countermeasures applicable:
- Only if targeting:
* The specific injection technique

* OTP subsystem
o more general, but localized
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Conclusions



New fault models enable new attacks with:
- Different prerequisites

- Completely new impacts
- Improved effectiveness
- Challenging to be defended against
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* Switching fault model may bypass entire classes of
countermeasures

* Effective defensive design should not assume:
- a specific Fault Model
- a specific Exploit
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