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First year computer science: 
Von Neumann Architecture
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Computer Architecture course
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The rest of the CS degree
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• High level languages

• Asymptotic rather than concrete performance

• Architecture is a minor topic

• Focus on abstraction

• CPU Vendors’ interests

Programmers’ Model of Execution

Abstract Concrete

Hardware Dedicated Shared

Memory Uniform Non-uniform

Execution Serial Superscalar

(In)Security lives and breathes in the 
cracks between abstraction layers.

Thomas Dullien (@halvarflake)
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CPU vs. Memory

Processor
Speed

1 MHz

8*2600 MHz

Memory
Latency

500 ns

63 ns



9

Bridging the gap

Cache utilises locality to bridge 
the gap

• Divides memory into lines

• Stores recently used lines

• In a cache hit, data is retrieved 
from the cache

• In a cache miss, data is retrieved 
from memory and inserted to 
the cache

Processor

Memory

Cache
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Cache Consistency

• Memory and cache can be in 
inconsistent states
• Rare, but possible

• Solution: Flushing the cache 
contents
• Ensures that the next load is 

served from the memory

Processor

Memory

Cache
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FLUSH+RELOAD [YF14]

• FLUSH memory line

• Wait a bit

• Measure time to RELOAD

line
• slow-> no access

• fast-> access

• Repeat

Processor

Memory

Cache
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The RSA Encryption System

• The RSA encryption is a public key cryptographic 
scheme

C = Me mod N

M

CM = Cd mod N

Key Generation:
• Select random primes p and q
• Calculate N = pq

• Select a public exponent e(=65537)

• Compute d=e-1 mod φ(N)

• (N, e) is the public key
• (p, q, d) is the private key
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Operation x i di

1 2 101

Square 1 2 101

reduce 1 2 101

Multiply 11 2 101

reduce 11 2 101

Square 121 1 101

reduce 21 1 101

Square 441 0 101

reduce 41 0 101

Multiply 451 0 101

reduce 51 0 101

GnuPG 1.4.13 Exponentiation

Example: 
115 mod 100 = 

161,051 mod 100 = 51

x⟵1

for i⟵|d|-1 downto 0 do

x⟵x2 mod n

if (di = 1) then

x = xC mod n

endif

done

return x

The private 
key is 

encoded in 
the sequence 
of operations

!!!
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Flush+Reload on GnuPG 1.4.13
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The FLUSH+RELOAD Technique

• Leaks information on victim access to shared 
memory.

• Spy monitors victim’s access to shared code
• Spy can determine what victim does

• Spy can infer the data the victim operates on
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Set Associative Caches

• Memory lines map to cache 
sets. Multiple lines map to 
the same set.

• Sets consist of ways. A 
memory line can be stored in 
any of the ways of the set it 
maps to.

• When a cache miss occurs, 
one of the lines in the set is 
evicted.

Memory

Ways

Sets
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The Prime+Probe Attack [OST06]

• Allocate a cache-sized memory 
buffer

• Prime: fills the cache with the 
contents of the buffer

• Probe: measure the time to 
access each cache set
• Slow access indicates victim access 

to the set

• The probe phase primes the 
cache for the next round

Memory
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Sample Victim: Data Rattle
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Cache Fingerprint of 
the Rattle Program
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Real Victim – AES
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AES T-table access

• Assume we know the plaintext and the index (s0>>24) 
• We can recover the most significant byte of the key

s0 = plaintext ^ key

t0 = Te0[s0>>24]
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Prime+Probe Attack on AES

• For many plaintexts do: Prime, Encrypt, Probe

• Calculate the average probe time of each cache set as a 
function of the byte value

s0 = plaintext ^ key

t0 = Te0[s0>>24]



27

PP Attack on AES - Results
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PP Attack on AES – More Results
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Other Techniques (a very partial list)

• Evict+Time [OST06]
• Branch prediction [AKS06,ERAP18,…]
• L1-I Prime+Probe [Aci07]
• LLC Prime+Probe [LYG+15,IES15]
• Flush+Flush [GMWM15]
• CacheBleed [YGH17]
• TLBleed [GRBG18]
• PortSmash [CBH+18]
• SPOILER [IMB+19]
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• OpenSSL
LOW Severity. This includes issues such as those that … or hard to 
exploit timing (side channel) attacks. 

https://www.openssl.org/policies/secpolicy.html

• Attacks are easy, but at the same time
• Publications are terse – technical details are often omitted

• Generic tools do not exist
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Mastik

• Extremely bad acronym for 
Micro-Architectural Side-channel ToolKit

• Original Aims
• Collate information on SC attacks 
• Improve our understanding of the domain

• Provide somewhat-robust implementations of all known SC attack 
techniques for every architecture

• Implementation of generic analysis techniques

• Reduce barriers to entry into the area

• Shift focus to cryptanalysis
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Current Status

• Reasonably robust implementation of six attacks
• Prime+Probe on L1-D, L1-I and L3

• Flush+Reload

• Flush+Flush

• Performance degradation

• Only Intel x86-64, on Linux and Mac (limited)
• x86-32 and limited ARM currently working in the lab

• Zero documentation, little testing

• Little user feedback
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Mastik – Setup

Allocate a handler of a 
Flush+Reload attack

Tell handler what to 
monitor

Prepare space for results
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Mastik – Attack

Run attack

Output results
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No need to program

FR-trace –s 2000 –c 100000 –f ./gpg \

–m mpih-mul.c:85 \

–m mpih-mul.c:271 \

–m mpih-div.c:356
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Speculative Execution Attacks
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Microarchitectural channels

• Program execution leaves traces 

inside the processor

• Analysing the traces conveys 

information about the program

mulq $m0

add  %rax,$A[0]

mov  8*2($np),%rax

lea  32($tp),$tp

adc  \$0,%rdx

mov  %rdx,$A[1]

mulq $m1

add  %rax,$N[0]

mov  8($a,$j),%rax

adc  \$0,%rdx

add  $A[0],$N[0]

adc  \$0,%rdx

mov  $N[0],-

24($tp)

mov  %rdx,$N[1]

mulq $m0

add  %rax,$A[1]

mov  8*1($np),%rax

adc  \$0,%rdx

mov  %rdx,$A[0]

mulq $m1

add  %rax,$N[1]

mov  ($a,$j),%rax

mov  8($a,$j),%rax

adc  \$0,%rdx

add  $A[0],$N[0]

adc  \$0,%rdx

mov  $N[0],24($tp)

mov  %rdx,$N[1]

We believe that hardware is working correctly. 

It is therefore the  responsibility of software that 

processes sensitive material to introduce the 

appropriate countermeasures.
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mulq $m0

add  %rax,$A[0]

mov  8*2($np),%rax

lea  32($tp),$tp

adc  \$0,%rdx

mov  %rdx,$A[1]

mulq $m1

add  %rax,$N[0]

mov  8($a,$j),%rax

adc  \$0,%rdx

add  $A[0],$N[0]

adc  \$0,%rdx

mov  $N[0],-

24($tp)

mov  %rdx,$N[1]

mulq $m0

add  %rax,$A[1]

mov  8*1($np),%rax

adc  \$0,%rdx

mov  %rdx,$A[0]

mulq $m1

add  %rax,$N[1]

mov  ($a,$j),%rax

mov  8($a,$j),%rax

adc  \$0,%rdx

Instruction Pipelining

• Nominally, the processor executes instructions one 

after the other

• Instruction execution consists of multiple steps

– Each uses a different unit

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back
Instruction 

Fetch
Instruction 

Decode
Argument 

Fetch
Execute

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back
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Instruction Pipelining

• Nominally, the processor executes instructions one 

after the other

• Instruction execution consists of multiple steps

– Each uses a different unit

• Pipelining increases utilisation by executing 

steps of multiple instructions

• Problem: dependencies

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back
Instruction 

Fetch
Instruction 

Decode
Argument 

Fetch
Execute

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

Instruction 
Fetch

Instruction 
Decode

Argument 
Fetch

Execute Write Back

mulq $m0

add  %rax,$A[0]

mov  8*2($np),%rax

lea  32($tp),$tp

adc  \$0,%rdx

mov  %rdx,$A[1]

mulq $m1

add  %rax,$N[0]

mov  8($a,$j),%rax

adc  \$0,%rdx

add  $A[0],$N[0]

adc  \$0,%rdx

mov  $N[0],-24($tp)

mov  %rdx,$N[1]

mulq $m0

add  %rax,$A[1]

mov  8*1($np),%rax

adc  \$0,%rdx

mov  %rdx,$A[0]

mulq $m1

add  %rax,$N[1]

mov  ($a,$j),%rax

mov  8($a,$j),%rax

adc  \$0,%rdס

c = a / b;

d = c + 5;



40

Out-of-order execution

• Execute instructions when data is available 

rather than by program order

• Completed instructions wait in the reorder 

buffer until all previous instructions are retired

• Why not retire immediately?

IF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;IF ID AF EX WB

IF ID AF EX

IF ID AF EXIF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB
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Out-of-order execution

• Execute instructions when data is available 

rather than by program order

• Completed instructions wait in the reorder 

buffer until all previous instructions are retired

• Why not retire immediately?

• Out-of-order execution is speculative!

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;

IF ID

IF ID AF EX

IF ID AF EX WB

What if b=0?
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Speculative execution

• Abandon instructions in the reorder buffer

if never executed in program order

• Also useful for handling branches

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;

IF ID

IF ID AF EX

IF ID AF EX WB

With b=0!!
IF ID AF EX WB

IF ID AF EX WB

IF ID
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Speculative Execution and Branches

• When execution reaches a branch

• The processor predicts the 

outcome of the branch

• Execution proceeds (speculatively) 

along predicted branch

• Correct prediction → all is well

• Misprediction → abandon and 

resume
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Branch Prediction

• Branch History Buffer (BHB)

– Outcome of conditional branches

– Does the program tend to take this 

branch?

• Branch Target Buffer (BTB)

– Target of indirect branches

– Where does the program usually 

go from here?
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Main Discovery

• Abandoned speculative 

execution leaves traces in 

the microarchitecture

• Developed techniques to 

implement a covert 

channel from the 

abandoned code to the 

attacker
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Attack overview

If (access permitted)

Access data

Leak data

Read data

Implicit or explicit 
validity test

Via a microarchitectural 
covert channel

Via a microarchitectural 
covert channel
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Meltdown
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i = *pointer;

y = array[i * 256];

Meltdown

Cache

array Kernel space (protected)pointer
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i = *pointer;

y = array[i * 256];

Cache

array Kernel space (protected)pointer

Meltdown
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array Kernel space (protected)pointer

i = *pointer;

y = array[i * 256];

Cache

Meltdown
Found it!!!
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Spectre

Variant 1
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if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

Spectre (Variant 1)

arrayarray2 secret array_lenx

<

Attacker

Victim

Branch not
taken!
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Victim

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

Spectre (Variant 1)

<

Cachex secret

arrayarray2 secret array_lenx

Attacker

Branch not
taken!

X is large
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VictimMispredict

arrayarray2 secret array_lenx

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

Spectre (Variant 1)

<

Cachex secret

Attacker

Branch not
taken!
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Spectre

Variant 2
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Spectre (Variant 2)

Attacker

Victim

Victim's

Address

Space

Attacker's

Address

Space

jmpq %rax

movw (%rbx), %ax
movq (%rcx, %rax, 8), %rcx

lea gadget, %rax
jmpq %rax

ret
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How deep does the rabbit hole go?

• Variant 3a: leak model-specific registers

• Variant 4: Read after write may read old value

• Lazy-FP: Read floating-point registers of other processes

• Foreshadow: Like Meltdown, but breaks SGX

• Foreshadow-NG: cross-process/VM read from L1 cache

• RIDL: Read “rando” data as it flows through the processor

• Fallout: read data from the store buffer
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Countermeasures
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Countermeasures

If (access permitted)

Access data

Leak data

Read data

Block speculative 
execution

Prevent access to data

Stop the data leak

Close the 
Channel
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Spectre – Variant 1

• Compiler patches to block speculative 

execution

• Barriers at every branch are expensive

– Use static analysis to find potential leaks
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Spectre – Variant 2

• New MSRs to prevent BTB 

prediction across security 

domains

– No learning across hyperthreads

– Higher security levels do not

learn from lower level activity

– BTB clobbering
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Meltdown

• Use a separate address space for the kernel

– Overhead when crossing address space

Kernel space (protected)

Process

KernelMapping of process
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Spectre – Variant 1

• Strict site isolation

• Limit memory access or use of data

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

i = array[x % array_len];

y = array2[i * 256];
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Spectre – Variant 1

• Reduce timer frequency

– Also disable features such as SharedArrayBuffers
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Conclusions

• Decades of focus on performance with little regard to security 

bring us Spectre and Meltdown

– This is not much different to software development

– … but it's harder to fix

• Likely to affect computer security for a long time

– We do not understand the full implications yet

• Microarchitectural channels matter


