]

An Introduction to
Microarchitectural Attacks

Yuval Yarom, The University of Adelaide and Data61

|

First year computer science:

Von Neumann Architecture

Input
Device

L

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

Computer Architecture course

L1 Instruction Cache L]y
}
Branch Instruction Fetch & PreDecode
2 Predictor :
3 l Instruction Queue
=
He Joon Lo [ior [or [uor
™ M"Il.‘l'x
Allocation Queue
s s uop HOP
CDB :__ Reorder buffer
lpw lp:l'.'? lp:DP 1,’.113? 1;{:9 1,;0? lyOP l,:op
)
.gﬂ Ih:: Scheduler
I'.ﬁ HOP pOP O HOP HOP wOP HOP wOP
=
= 3| (8] |§] |
3 HREIRE IR
Q2 2]
5} (7]
Execution Units
[] e]
E |Load Buffer| |Store Buffer|e
E 2 T 3 o
g > DTLBle—> STLB .
S = L1 Data Cache |- .
> A L2 Cache
4

The rest of the CS degree

Input
Device

L

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

Programmers’ Model of Execution

-Fﬁghleyﬂ" ““““““““

[] A () o []
Asy:_': (In)Security lives and breathes in the
¢ Fcni metic/Logic Unit

cracks between abstraction layers.

antral Processing Unit

Control Unit

- Focus
. CPU v\ Thomas Dullien (@halvarflake)
Abstract Concrete
Hardware Dedicated Shared
Memory Uniform Non-uniform
| Execution Serial Superscalar

CPU vs. Memory |

Processor Memory
Speed Latency
1 MHz 500 ns

8*2600 MHz 63 ns

Bridging the gap

Cache utilises locality to bridge
the gap

- Divides memory into lines

. Stores recently used lines

- In a cache hit, data is retrieved
from the cache

- In a cache miss, data is retrieved

from memory and inserted to
the cache

o

Processor

-

I

Cache

Memory

Cache Consistency

- Memory and cache can be in
Inconsistent states
- Rare, but possible

- Solution: Flushing the cache
contents

- Ensures that the next load is
served from the memory

L

-

Processor

Memory

FLUSH+RELOAD [YF14]

- FLUSH memory line

- Wait a bit

- Measure time to RELOAD
line
. slow-> no access
. fast-> access

- Repeat

L

Processor |

Memory

11

The RSA Encryption System

- The RSA encryption is a public key cryptographic

scheme

ﬁey Generation:
* Select random primes p and Q
* Calculate N = pg

e Compute d=e1 mod ¢(N)
* (N, e) is the public key
\ (p, g, d) is the private key

\

* Select a public exponent e(=65537)

_4

[C]: Me mod N ' \

12

GnuPG 1.4.13 Exponentiation

X1
for 1 «|d|-1 downto O do

return X

Example:

11°> mod 100 =
| 161,051 mod 100 =51

Operation X | of

The private
key is

encoded in
the sequence

of operations
11

13

Flush+Reload on GnuPG 1.4.13

L]
| A e e T T . . !
Ll —
| pleloe iy T T
m A e
[1+] i —— |||Jﬂ|ll
w. moa= = .uw..
(73] .".I.l..'l
=T =
F—
T e e e P R R PR R e e
e e
> =
(el B —
= =
-5 =
= —
||||||||||||||||||
A sy iy mp ey
== SN
o
o
m

(s2|2A2) awi] ssad0y

3500

3400

3300

3200

3100

3000

Time (samples)

3180.79, 156.326

14

The FLUSH+RELOAD Technique |

. Leaks information on victim access to shared
memory.

- Spy monitors victim’s access to shared code
- Spy can determine what victim does
- Spy can infer the data the victim operates on

L

15

Set Associative Caches

- Memory lines map to cache
sets. Multiple lines map to
the same set.

- Sets consist of ways. A
memory line can be stored in
any of the ways of the set it
maps to.

- When a cache miss occurs,
onhe of the lines in the set is
evicted.

Memory

16

The Prime+Probe Attack [OSTO6]

- Allocate a cache-sized memory
buffer

- Prime: fills the cache with the
contents of the buffer

- Probe: measure the time to
access each cache set

. Slow access indicates victim access
to the set

- The probe phase primes the Memory

| cache for the next round

17

Sample Victim: Data Rattle |

volatile char buffer[4096];

int main(int ac, char xxav) {

for (5;) A
for (int i = 0; i < 64000; i++)
buffer[800] += i;

for (int i = 0; i < 64000; i++)
buffer[1800] += 1i;

-

18

300

Cache Fingerprint of S
the Rattle Program 250 i

Real Victim — AES

GETU32(in + 8) =~ rk[2];
s3 = GETU32(in + 12) ~ rk([3]:

S
52

#ifdef FULL_UNROLL

[% roupns
1t =ed[s50 >> 241
tl = Teo 1]

t2 = Ted[s2
t3 = Ted@[s3
[# round 2:
50 = Te@[t0
51 = Te@[tl
52 = Te@[t2
53 = Te@[t3
[# round 3:
t0 = Te@[sO
tl = TeB@[s1
t2 = Te@[s2
t3 = Ted[s3
[round 4:

50 = Te@[t0

-
-
*/
=
e
-
=]
%/
e
-
=]
-
*/
-

24]
24]

24]
24]
24]
24]

24]
24]
24]
24]

24]

> > D > > >)

> 2 > D

Tell[(sl
Tell(s2
Tell(s3
Tell(s@

Tell[(t1
Tell[(t2
Tell[(t3
Tell[(t0

Tell(sl
Tell(s2
Tell[(s3
Tell(s@

Tell[(t1

=2
-
-
e

-
e
=2
-

e
=2
-
-

=2

s

static const u32 Te@[256] = {
@xc66363a5U, @xf87c7cB4U, @xee777799U, @xf67b7b8dU,
exfff2f20du, @xdéebebbdU, @xde6f6fblU, ©x91c5c554U,
Px60303050U, 0x02010103U, @xceb767a9l, @x562b2b7dU,
Pxe7fefeldl, @xb5d7d762U, @x4dababebl, @xec76769al,
@x8fcacad5U, @x1f82829dU, @x89c9c940U, @xfa7d7d87U,
@xeffafalsu, @xb25959eblU, @xBed4747c9l, @xfbfefeebu,
Pxd4ladadecU, @xb3d4d4e67U, @x5fa2a2fdl, @x45afafeal,
g\\k 0x239c9cbfU, @x53ad4adf7U, @xed727296U, @x9bc@cd5buU,
16) & Bxff] ~ Te2[(t2 >> 8) & @xff] ~ Te3d[t3 & @xff] ~ rk[8]:
16) & Bxff] ~ Te2[(t3 >> 8) & @xff] ~ Te3[t® & @xff] ~ rk[9];
16) & Bxff] ~ Te2[(t@ >> 8) & @xff] ~ Te3d[tl & @xff] ~ rk[18];
16) & @xff] ~ Te2[(t1l >> B) & @xff] ~ Te3[t2 & oxff] ~ rk[11];
16) & Bxff] ~ Te2[(s2 >> 8) & @xff] ~ Te3d[s3 & @xff] ~ rk[12];
16) & @xff] ~ Te2[(s3 >> 8) & @Oxff] ~ Te3[s@ & Oxff] ~ rk[13];
16) & Bxff] =~ Te2[(s@ >> B8) & Oxff] ~ Te3d[sl & @xff] ~ rk[14];
16) & Bxff] ~ Te2[(sl >> 8) & @xff] ~ Te3d[s2 & @xff] ~ rk[15];
16) & @xff] ~ Te2[(t2 >> 8) & Oxff] ~ Te3[t3 & axff] ~ rk[16];

S

/

20

AES T-table access

\
static const u32 Te@[256] = {
@xc6b6363a5U, @xf87c7cB4U, @xee777799U, Oxf67b7b8dU,
Axfff2f20dyU, @xdeébebbdlU, @xdebfefblU, ©x91c5c554U,
0x60303050U, @x02010103U, @xceb767a9l, @x562bzb7du,
Mwves TEafE 1000 AwbhEATATED AvAdabhaskbail |l MwvasrTETED=]]
\ /
sO0 = plaintext * key
t0 = TeO[s0>>24]

- Assume we know the plaintext and the index (s0>>24)
- We can recover the most significant byte of the key

21

Prime+Probe Attack on AES |
s0 plaintext * key

t0 TeO[s0>>24]

- For many plaintexts do: Prime, Encrypt, Probe

- Calculate the average probe time of each cache set as a
function of the byte value

L

26

PP Attack on AES - Results |

0.5
14 .l

0.4
12 |

0.3
10

.l 0.2

.. - 1 01

" .

-0.2

30 40 =14 60

= fd = =] e
=]
i
o
P
=]

PP Attack on AES — More Results |

0.2
8

6 - 1 0.1
A 0
2 - 4 -0.1
0
-0.2
0 10 20 30 40 50 60

28

Other Techniques (a very partial list) |
. Evict+Time [OSTO6]
- Branch prediction [AKSO6,ERAP1S,...]
. L1-1 Prime+Probe [AciO7]
« LLC Prime+Probe [LYG+15,IES15]
 Flush+Flush [GMWM15]
- CacheBleed [YGH17]

- TLBleed [GRBG18]

« PortSmash [CBH+138]
| « SPOILER [IMB+19]

o

- OpenSSL

LOW Severity. This includes issues such as those that ... or hard to
exploit timing (side channel) attacks.
https://www.openssl.org/policies/secpolicy.html

- Attacks are easy, but at the same time
- Publications are terse — technical details are often omitted
- Generic tools do not exist

L

30

Mastik |

- Extremely bad acronym for
Micro-Architectural Side-channel ToolKit

- Original Aims
. Collate information on SC attacks

 Improve our understanding of the domain

 Provide somewhat-robust implementations of all known SC attack
techniques for every architecture

- Implementation of generic analysis techniques
- Reduce barriers to entry into the area
. Shift focus to cryptanalysis

31

Current Status |

- Reasonably robust implementation of six attacks
« Prime+Probe on L1-D, L1-l and L3
. Flush+Reload
+ Flush+Flush
« Performance degradation

« Only Intel x86-64, on Linux and Mac (limited)
- X86-32 and limited ARM currently working in the lab

- Zero documentation, little testing

. Little user feedback

L

32

"mpih-mul.c:85",

"mpih-mul.c:271", "L-eiLAJJAJ4~=41*a

"mpih—div.c:356" [ttack y
}; Tell hand ;r what to

Mastik — Setup
#define NMONITOR 3 A
char smonitor(] =4 Allocate a handler of a

int main(int ac, char MO
char xbinary = av[1

Prepare space for results

fr_t fr = fr_prepar

for (int 1 = @ NMONITOR; i++) {
uint64_t set = sym_getsymbolof
fr_monitor(fr, map_offset(binar
}

uintl6 t *res = malloc(SAMPLES * NMONITOR * sizeof(uintle t));

for (int 1 = @; 1 < SAMPLES * NMONITOR ; i+= 4096/sizeof(uintls t))
res[i] = 1;
fr_probe(fr, res);

ary, monitor[i]);
set));

33

Mastik — Attack
. ﬁ
Run attack

4

int 1= fr_trace(fr, SAMPLES, res, SLOT, THRESHOLD, 500);

for (int 1 = 0; 1 < 1; i++) {
for (int j = @; j < NMONITOR; j++)
printf("sd ", res[i x NMONITOR + jl);
putchar('\n');
}

free(res):;
fr_release(fr); Output results

T /

34

No need to program |
FR-trace -s 2000 -c 100000 -f ./gpg \

-m mpih-mul.c:85 \
-m mpih-mul.c:271 \
-m mpih-div.c:356

I |

Speculative Execution Attacks

Microarchitectural channels

* Program execution leaves traces
iInside the processor

‘'We believe that hardware Is working correctly.
It Is therefore the responsiblility of software that

mulg $mO
add S%rax,S$SA[0]
ov 8*2(Snp),%rax

processes sensitive material to introduce the
appropriate countermeasures.

37

Instruction Pipelining

* Nominally, the processor executes instructions one
after the other

* |nstruction execution consists of multiple steps
— Each uses a different unit

Instruction Pipelining

* Nominally, the processor executes instructions one
after the other
tp), Stp
$0, $rdx

* |nstruction execution consists of multiple steps :
Frdx, SA[1]
— Each uses a different unit Saa” Srax, sn (o)

mov 8($a,$j),%rax
adc \$0, %rdx

* Pipelining increases utilisation by executing sad sarh) S0l

adc \$0, %rdx
mov SN[O0],-24($tp)

steps of multiple instructions v Lra it

add $%$rax,SA[1]
. | mov 8%*1($np),S%rax
a / br adc \$0, %rdx
mov %rdx, SA[0]
— o« | mulg S$ml
d =c¢c + 5/ add %rax, SN[1]

mov ($a,$j),%rax
mov 8(a,Sj),%rax
adc \$0, %rdo

0
I

Write Back

Execute Write Back

* Problem: dependencies

20

Out-of-order execution

 Execute instructions when data Is available
rather than by program order

IF | ID | AF | EX | WB c =a/ b;
7 o N

IF IDOEXWB d=c + 5;
BN /.

IF | ID | AF | EX | WB e =f + g;

« Completed instructions wait in the reorder
buffer until all previous instructions are retired

* Why not retire immediately?

40

Out-of-order execution

41

« Execute Instructions when data is available

rather than by program order
What if b-O’?}

@ WB cC =

IF | ID | AF | EX | WB e =f + g;

EX | WB d=c + 5;

« Completed instructions wait in the reorder
buffer until all previous instructions are retired

* Why not retire immediately?

» Qut-of-order execution Is speculative!

Speculative execution

« Abandon instructions in the reorder buffer
If never executed In program order

With b=0!! }
IF | ID | AF | EX | WB c =a / b;
IF | ID | AF | EX | WB d=c¢c + 5;
IF | ID | AF | EX | WB e =f + g;

» Also useful for handling branches

42

Speculative Execution and Branches

43

When execution reaches a branch

The processor predicts the
outcome of the branch

Execution proceeds (speculatively)
along predicted branch

Correct prediction - all is well

Misprediction - abandon and
resume

Branch Prediction

« Branch History Buffer (BHB) « Branch Target Buffer (BTB)
— Outcome of conditional branches — Target of indirect branches
— Does the program tend to take this — Where does the program usually
branch? go from here?

\

44

Main Discovery

« Abandoned speculative
execution leaves traces In
the microarchitecture

* Developed technigues to
Implement a covert
channel from the @
abandoned code to the 'I*
att aC ke r MELTDOWN

%

SPECTRE

45

Attack overview

46

If (access pe
Access data

Itted)

Implicit or explicit
validity test

Read data

4]]]
Via a microarchitectural
covert channel

|

Meltdown

48

Meltdown

pointer;

Cache

array

pointer

Kernel space (protected)

49

Meltdown

*pointer;

pointer

“ernel-spacy (protected)

Meltdown
Found it!!!

i = *pointer;

~
~
~
~

array pointer “ernel-spacy (protected)

50

Spectre

Variant 1

Spectre (Variant 1)

“‘--lllllllll.... VICtIm
. ol
/-\ o* ',.
® . A
- ({;‘.‘ ‘ if (x < array len] {
4 N A 1 = array|[x];
Saanr> Branch not
Attacker taken! }
e
array?2 X array secret array_len

52

Spectre (Variant 1) X is large

——

\ g
\ g
*
(00) ;..
‘0

x“< array_len] ({

& i = array[x]/]
| |
Attacker ta@' }
| X secret Cache
array? X array secret array_len
: f
<

53

Spectre (Variant 1)

Mispredict
L
® .
I®)
Attacker
X secret Cache
array2 X array secret array_len
A r
<

54

Spectre

Variant 2

Spectre (Variant 2) vietim

ret

Attacker

N

_
T

N
|
[
|
u
.

2

4

2 4
a4,
N
""sspgpgumunnpun®

Attacker's Victim's
Address Address
Space

. Space

How deep does the rabbit hole go?

Variant 3a: leak model-specific reqaisters

8 "The processor is, in fact, operating as it is designed,”
-§ Smith said. "And in every case, it's been this side-channel
approach that the researchers used to gain information

even while the processor is executing normally its intended
functions.”

 Fallout: read data from the store buffer

57

{{j Countermeasures

Countermeasures

Access data
Leak data

Read data

Spectre — Variant 1

ve
Compiler patches to block speculati
execution

M1crosof t’s compiler
Barriers at eve] Spectre fix shows houy hard this

Problem wi]] be t, solve
— Use Statl C an 4 Investigation of Microso

ft's Ccompiler changes shoy that much of the
time, they won't fix Spectre.
PE

60

Spectre — Variant 2

SUBSCRIBE |

2

Microsoft issues emergency Windows patch
to disable Intel's buggy Spectre fix
atches,

seems buggier than usual after the recent round of Spectre p

|f your windows PC
download this.

you might want to

b By Mark Hachman
aenior Editor, PCWorld

61

Meltdown

e Use a

A CENTRE SOFTWARE SECUR

62

Kernel

Spectre — Variant 1

63

e Strict site i1solation

* Limit memory access or use of data

if (x < array len) {

}

i
y

evil.com

b.com‘]

LN

array[x];

array2[i * 256];

array[x % array len];
array2[i * 256];

Spectre — Variant 1

* Reduce timer frequency
— Also disable features such as SharedArrayBuffers

64

Conclusions

* Decades of focus on performance with little regard to security
bring us Spectre and Meltdown

— This Is not much different to software development
— ... but it's harder to fix

 Likely to affect computer security for a long time
— We do not understand the full implications yet

 Microarchitectural channels matter

65

