
1

An Introduction to
Microarchitectural Attacks

Yuval Yarom, The University of Adelaide and Data61

2

3

First year computer science:
Von Neumann Architecture

4

Computer Architecture course

5

The rest of the CS degree

6

• High level languages

• Asymptotic rather than concrete performance

• Architecture is a minor topic

• Focus on abstraction

• CPU Vendors’ interests

Programmers’ Model of Execution

Abstract Concrete

Hardware Dedicated Shared

Memory Uniform Non-uniform

Execution Serial Superscalar

(In)Security lives and breathes in the
cracks between abstraction layers.

Thomas Dullien (@halvarflake)

8

CPU vs. Memory

Processor
Speed

1 MHz

8*2600 MHz

Memory
Latency

500 ns

63 ns

9

Bridging the gap

Cache utilises locality to bridge
the gap

• Divides memory into lines

• Stores recently used lines

• In a cache hit, data is retrieved
from the cache

• In a cache miss, data is retrieved
from memory and inserted to
the cache

Processor

Memory

Cache

10

Cache Consistency

• Memory and cache can be in
inconsistent states
• Rare, but possible

• Solution: Flushing the cache
contents
• Ensures that the next load is

served from the memory

Processor

Memory

Cache

11

FLUSH+RELOAD [YF14]

• FLUSH memory line

• Wait a bit

• Measure time to RELOAD

line
• slow-> no access

• fast-> access

• Repeat

Processor

Memory

Cache

12

The RSA Encryption System

• The RSA encryption is a public key cryptographic
scheme

C = Me mod N

M

CM = Cd mod N

Key Generation:
• Select random primes p and q
• Calculate N = pq

• Select a public exponent e(=65537)

• Compute d=e-1 mod φ(N)

• (N, e) is the public key
• (p, q, d) is the private key

13

Operation x i di

1 2 101

Square 1 2 101

reduce 1 2 101

Multiply 11 2 101

reduce 11 2 101

Square 121 1 101

reduce 21 1 101

Square 441 0 101

reduce 41 0 101

Multiply 451 0 101

reduce 51 0 101

GnuPG 1.4.13 Exponentiation

Example:
115 mod 100 =

161,051 mod 100 = 51

x⟵1

for i⟵|d|-1 downto 0 do

x⟵x2 mod n

if (di = 1) then

x = xC mod n

endif

done

return x

The private
key is

encoded in
the sequence
of operations

!!!

14

Flush+Reload on GnuPG 1.4.13

15

The FLUSH+RELOAD Technique

• Leaks information on victim access to shared
memory.

• Spy monitors victim’s access to shared code
• Spy can determine what victim does

• Spy can infer the data the victim operates on

16

Set Associative Caches

• Memory lines map to cache
sets. Multiple lines map to
the same set.

• Sets consist of ways. A
memory line can be stored in
any of the ways of the set it
maps to.

• When a cache miss occurs,
one of the lines in the set is
evicted.

Memory

Ways

Sets

17

The Prime+Probe Attack [OST06]

• Allocate a cache-sized memory
buffer

• Prime: fills the cache with the
contents of the buffer

• Probe: measure the time to
access each cache set
• Slow access indicates victim access

to the set

• The probe phase primes the
cache for the next round

Memory

18

Sample Victim: Data Rattle

19

Cache Fingerprint of
the Rattle Program

20

Real Victim – AES

21

AES T-table access

• Assume we know the plaintext and the index (s0>>24)
• We can recover the most significant byte of the key

s0 = plaintext ^ key

t0 = Te0[s0>>24]

26

Prime+Probe Attack on AES

• For many plaintexts do: Prime, Encrypt, Probe

• Calculate the average probe time of each cache set as a
function of the byte value

s0 = plaintext ^ key

t0 = Te0[s0>>24]

27

PP Attack on AES - Results

28

PP Attack on AES – More Results

29

Other Techniques (a very partial list)

• Evict+Time [OST06]
• Branch prediction [AKS06,ERAP18,…]
• L1-I Prime+Probe [Aci07]
• LLC Prime+Probe [LYG+15,IES15]
• Flush+Flush [GMWM15]
• CacheBleed [YGH17]
• TLBleed [GRBG18]
• PortSmash [CBH+18]
• SPOILER [IMB+19]

30

• OpenSSL
LOW Severity. This includes issues such as those that … or hard to
exploit timing (side channel) attacks.

https://www.openssl.org/policies/secpolicy.html

• Attacks are easy, but at the same time
• Publications are terse – technical details are often omitted

• Generic tools do not exist

31

Mastik

• Extremely bad acronym for
Micro-Architectural Side-channel ToolKit

• Original Aims
• Collate information on SC attacks
• Improve our understanding of the domain

• Provide somewhat-robust implementations of all known SC attack
techniques for every architecture

• Implementation of generic analysis techniques

• Reduce barriers to entry into the area

• Shift focus to cryptanalysis

32

Current Status

• Reasonably robust implementation of six attacks
• Prime+Probe on L1-D, L1-I and L3

• Flush+Reload

• Flush+Flush

• Performance degradation

• Only Intel x86-64, on Linux and Mac (limited)
• x86-32 and limited ARM currently working in the lab

• Zero documentation, little testing

• Little user feedback

33

Mastik – Setup

Allocate a handler of a
Flush+Reload attack

Tell handler what to
monitor

Prepare space for results

34

Mastik – Attack

Run attack

Output results

35

No need to program

FR-trace –s 2000 –c 100000 –f ./gpg \

–m mpih-mul.c:85 \

–m mpih-mul.c:271 \

–m mpih-div.c:356

36

Speculative Execution Attacks

37

Microarchitectural channels

• Program execution leaves traces

inside the processor

• Analysing the traces conveys

information about the program

mulq $m0

add %rax,$A[0]

mov 8*2($np),%rax

lea 32($tp),$tp

adc \$0,%rdx

mov %rdx,$A[1]

mulq $m1

add %rax,$N[0]

mov 8($a,$j),%rax

adc \$0,%rdx

add $A[0],$N[0]

adc \$0,%rdx

mov $N[0],-

24($tp)

mov %rdx,$N[1]

mulq $m0

add %rax,$A[1]

mov 8*1($np),%rax

adc \$0,%rdx

mov %rdx,$A[0]

mulq $m1

add %rax,$N[1]

mov ($a,$j),%rax

mov 8($a,$j),%rax

adc \$0,%rdx

add $A[0],$N[0]

adc \$0,%rdx

mov $N[0],24($tp)

mov %rdx,$N[1]

We believe that hardware is working correctly.

It is therefore the responsibility of software that

processes sensitive material to introduce the

appropriate countermeasures.

38

mulq $m0

add %rax,$A[0]

mov 8*2($np),%rax

lea 32($tp),$tp

adc \$0,%rdx

mov %rdx,$A[1]

mulq $m1

add %rax,$N[0]

mov 8($a,$j),%rax

adc \$0,%rdx

add $A[0],$N[0]

adc \$0,%rdx

mov $N[0],-

24($tp)

mov %rdx,$N[1]

mulq $m0

add %rax,$A[1]

mov 8*1($np),%rax

adc \$0,%rdx

mov %rdx,$A[0]

mulq $m1

add %rax,$N[1]

mov ($a,$j),%rax

mov 8($a,$j),%rax

adc \$0,%rdx

Instruction Pipelining

• Nominally, the processor executes instructions one

after the other

• Instruction execution consists of multiple steps

– Each uses a different unit

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back
Instruction

Fetch
Instruction

Decode
Argument

Fetch
Execute

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

39

Instruction Pipelining

• Nominally, the processor executes instructions one

after the other

• Instruction execution consists of multiple steps

– Each uses a different unit

• Pipelining increases utilisation by executing

steps of multiple instructions

• Problem: dependencies

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back
Instruction

Fetch
Instruction

Decode
Argument

Fetch
Execute

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

Instruction
Fetch

Instruction
Decode

Argument
Fetch

Execute Write Back

mulq $m0

add %rax,$A[0]

mov 8*2($np),%rax

lea 32($tp),$tp

adc \$0,%rdx

mov %rdx,$A[1]

mulq $m1

add %rax,$N[0]

mov 8($a,$j),%rax

adc \$0,%rdx

add $A[0],$N[0]

adc \$0,%rdx

mov $N[0],-24($tp)

mov %rdx,$N[1]

mulq $m0

add %rax,$A[1]

mov 8*1($np),%rax

adc \$0,%rdx

mov %rdx,$A[0]

mulq $m1

add %rax,$N[1]

mov ($a,$j),%rax

mov 8($a,$j),%rax

adc \$0,%rdס

c = a / b;

d = c + 5;

40

Out-of-order execution

• Execute instructions when data is available

rather than by program order

• Completed instructions wait in the reorder

buffer until all previous instructions are retired

• Why not retire immediately?

IF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;IF ID AF EX WB

IF ID AF EX

IF ID AF EXIF ID AF EX WB

IF ID AF EX WB

IF ID AF EX WB

41

Out-of-order execution

• Execute instructions when data is available

rather than by program order

• Completed instructions wait in the reorder

buffer until all previous instructions are retired

• Why not retire immediately?

• Out-of-order execution is speculative!

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;

IF ID

IF ID AF EX

IF ID AF EX WB

What if b=0?

42

Speculative execution

• Abandon instructions in the reorder buffer

if never executed in program order

• Also useful for handling branches

IF ID AF EX WB

IF ID AF EX WB

c = a / b;

d = c + 5;

e = f + g;

IF ID

IF ID AF EX

IF ID AF EX WB

With b=0!!
IF ID AF EX WB

IF ID AF EX WB

IF ID

43

Speculative Execution and Branches

• When execution reaches a branch

• The processor predicts the

outcome of the branch

• Execution proceeds (speculatively)

along predicted branch

• Correct prediction → all is well

• Misprediction → abandon and

resume

44

Branch Prediction

• Branch History Buffer (BHB)

– Outcome of conditional branches

– Does the program tend to take this

branch?

• Branch Target Buffer (BTB)

– Target of indirect branches

– Where does the program usually

go from here?

45

Main Discovery

• Abandoned speculative

execution leaves traces in

the microarchitecture

• Developed techniques to

implement a covert

channel from the

abandoned code to the

attacker

46

Attack overview

If (access permitted)

Access data

Leak data

Read data

Implicit or explicit
validity test

Via a microarchitectural
covert channel

Via a microarchitectural
covert channel

47

Meltdown

48

i = *pointer;

y = array[i * 256];

Meltdown

Cache

array Kernel space (protected)pointer

49

i = *pointer;

y = array[i * 256];

Cache

array Kernel space (protected)pointer

Meltdown

50

array Kernel space (protected)pointer

i = *pointer;

y = array[i * 256];

Cache

Meltdown
Found it!!!

51

Spectre

Variant 1

52

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

Spectre (Variant 1)

arrayarray2 secret array_lenx

<

Attacker

Victim

Branch not
taken!

53

Victim

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

Spectre (Variant 1)

<

Cachex secret

arrayarray2 secret array_lenx

Attacker

Branch not
taken!

X is large

54

VictimMispredict

arrayarray2 secret array_lenx

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

Spectre (Variant 1)

<

Cachex secret

Attacker

Branch not
taken!

55

Spectre

Variant 2

56

Spectre (Variant 2)

Attacker

Victim

Victim's

Address

Space

Attacker's

Address

Space

jmpq %rax

movw (%rbx), %ax
movq (%rcx, %rax, 8), %rcx

lea gadget, %rax
jmpq %rax

ret

57

How deep does the rabbit hole go?

• Variant 3a: leak model-specific registers

• Variant 4: Read after write may read old value

• Lazy-FP: Read floating-point registers of other processes

• Foreshadow: Like Meltdown, but breaks SGX

• Foreshadow-NG: cross-process/VM read from L1 cache

• RIDL: Read “rando” data as it flows through the processor

• Fallout: read data from the store buffer

58

Countermeasures

59

Countermeasures

If (access permitted)

Access data

Leak data

Read data

Block speculative
execution

Prevent access to data

Stop the data leak

Close the
Channel

60

Spectre – Variant 1

• Compiler patches to block speculative

execution

• Barriers at every branch are expensive

– Use static analysis to find potential leaks

61

Spectre – Variant 2

• New MSRs to prevent BTB

prediction across security

domains

– No learning across hyperthreads

– Higher security levels do not

learn from lower level activity

– BTB clobbering

62

Meltdown

• Use a separate address space for the kernel

– Overhead when crossing address space

Kernel space (protected)

Process

KernelMapping of process

63

Spectre – Variant 1

• Strict site isolation

• Limit memory access or use of data

if (x < array_len) {

i = array[x];

y = array2[i * 256];

}

i = array[x % array_len];

y = array2[i * 256];

64

Spectre – Variant 1

• Reduce timer frequency

– Also disable features such as SharedArrayBuffers

65

Conclusions

• Decades of focus on performance with little regard to security

bring us Spectre and Meltdown

– This is not much different to software development

– … but it's harder to fix

• Likely to affect computer security for a long time

– We do not understand the full implications yet

• Microarchitectural channels matter

