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Motivation – The Eternal War in Memory*

• Many security vulnerabilities exploit memory safety violations
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* Title based on Oakland 2013 paper: SoK: Eternal War in Memory, László Szekeres, Mathias Payer, Tao Wei, Dawn Song
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source: http://xkcd.com
/1354/

Example 1



4

source: http://xkcd.com
/1354/
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source: http://xkcd.com
/1354/



Went wrong? How do we do better?

• Classical answer:

• The programmer forgot to check the bounds of the data structure 
being read

• Fix the vulnerability in hindsight – one line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

• Our answer:

• Preserve bounds information during compilation

• Use hardware (CHERI processor) to dynamically check bounds 
with little overhead and guarantee pointer integrity & provenance
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Example 2: how to reduce the attack surface?

• The software attack surface keeps getting bigger

• Applications just keep getting larger

• Huge libraries of code aid rapid program development

• Everything is network connected

• This aids the attacker: an expanding number of ways to break in
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Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

Application-level least privilege



Principles CHERI helps to uphold

• The principle of intentional use

• Ensure that software runs the way the programmer intended, 
not the way the attacker tricked it

• Approach: guaranteed pointer integrity & provenance, with 
efficient dynamic bounds checking

• The principle of least privilege

• Reduce the attack surface using software compartmentalization

• Mitigates known and unknown exploits

• Approach: highly scalable and efficient compartmentalization
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CHERI HARDWARE ARCHITECTURE

10



A new type – the Capability

• CHERI Capability = bounds checked pointer with integrity

• Held in memory and in (new or extended) registers
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A new type – the Capability
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address

permissions compressed bounds (top, bottom) sv

virtual memory



critical property for security

monotonic decrease in rights guaranteed 
by formally verified hardware 

New Instructions
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• Memory access

• Loads and stores via a bounds checked capability

• Exception if address is out of range

• Guarded manipulation of capabilities

• Decrease bounds

• Decrease permissions

• Adjust the address

• Extract/test fields



Sealed Capabilities for Compartmentalization

• Sealed capabilities are none dereferencable capabilities

• Have to be unsealed (e.g. inside a compartment) before use
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Calling a Compartment
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SOFTWARE MODELS
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Background to CHERI Software Models

• Machine-level capabilities and instructions provide the building 
blocks on which new abstract capability software models can be 
built

• Analogy:

• Machine-level translation lookaside buffer (TLB) and page table 
walker enables the OS to represent virtual memory

• Virtual memory can then be used in different ways to impose 
new security features, e.g. guard pages
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Low-level CHERI software models

• Source and binary compatibility: C-language idioms, multiple ABIs

• Unmodified code: Existing code runs without modification

• Hybrid code: E.g., used in return addresses, for annotated data/code 
pointers, for specific types, stack pointers, etc.

… But “hybrid” is a spectrum: many different choices for manual and 
automatic selection of integers vs. capabilities, API and ABI impacts

• Pure-capability code: Ubiquitous data- and data-pointer protection. Not 
interoperable with legacy code due to changed pointer size.

• CHERI Clang/LLVM compiler prototype generates code for all three
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All pointers are capabilities



Pure Capability Code ® Needs CheriABI

• CheriABI

• Compatibility layer to the OS

• Allows capabilities to be used in place of pointers

• A bit like a 32-bit compatibility layer for a 64-bit OS

• Result – we can now recompile large corpuses of C code into a 
pure capability form with virtually no code changes

• Award winning paper at ASPLOS 2019:
CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer 
Privilege in the POSIX C Run-time Environment
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Capabilities for Bounds Checking and Integrity
• Pure capability code – all pointers become capabilities

• Compiler + malloc( ) derive bounds for objects

• Strong pointer provenance and integrity properties (validity tag)
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Data

Heap Stack

MonotonicityIntegrity and 
provenance Bounds

• Mitigates buffer overflow/overread vulnerabilities with no code change!



Capabilities for Control-Flow Robustness

• Capabilities used for return addresses

• Integrity bit mitigates code reuse attacks:

• ROP – Return Oriented Programming

• JOP – Jump Oriented Programming

• Much better than current statistical technique 
ASLR (Address Space Layout Randomisation)
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Summary of Capability Protections
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Valid userspace pointer set – pointers not generated using derivation rules 
are not part of the valid provenance tree and will not be dereferenceable

Pointer privilege reduction – capabilities allow pointers to carry specific 
privileges, which can be minimized with OS, compiler, and linker support

Foundation for higher-level models such as software compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and 
provenance Bounds



Compartmentalisation

• Compartment can be described using a sealed pair of capabilities:
(program counter, default data capability)

• CCall providing the domain transition

• Allows a number of abstract software models:

• Library compartmentalisation, e.g. of risky or legacy (non-cap.) code

• Process-based compartmentalisation within an application can be 
replaced by much more efficient capability-based protection

• Same virtual address space (more efficient TLB usage)

• Very similar software model (easy to port code)
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RESULTS

24



First we made it work – Demo tablet platform
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Red Team Evaluation by MIT Lincoln Labs
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CHERI mitigates 
Heartbleed exploit!



Memory-protection performance
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L1 cache miss rate for CHERI 256, CHERI-128, and MIPS
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CheriABI: A full pure-capability OS userspace
• Complete memory- and pointer-safe FreeBSD C/C++ userspace

• System libraries: crt/csu, libc, zlib, libxml, libssl, …

• System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …

• Applications: PostgreSQL, nginx; bringing up WebKit (C++)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots

• Compiler, allocators, run-time linker, etc., refine bounds and perms

• Trading off privilege minimization, monotonicity, API conformance

• Typically in memory management – realloc(), mmap() + mprotect()
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Evaluating memory-protection compatibility

• Prototyping approach:
• “pure-capability” C compiler (Clang/LLVM)
• full OS (FreeBSD) that use capabilities for all explicit or 

implied userspace pointers
• Observations:
• Little or no software modification (BSD base system + 

utilities)
• Small changes to source files for 34 of 824 programs, 28 of 

130 libraries
• Overall: modified ~200 of ~20,000 user-space C files/header
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CHERI vs. Process-based Compartmentalization
(Early IPC ping-pong microbenchmark results)
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CURRENT RESEARCH DIRECTIONS
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Generalising CHERI support for many ISAs
• 64-bit MIPS for pragmatic reason: needed a 64-bit RISC ISA in late 2010

• Generic CHERI support doesn’t mean that all implementations need to be 
identical

• E.g. portable virtual-memory semantics and UNIX process model 
despite (quite) different MMUs across architectures

• Architectural abstraction: Lift CHERI properties above ISA

• Architectural localization: E.g., ISA choices, opcode approaches, exceptions, 
page tables, … → architecture-specific specifications

• Currently working on CHERI-ARM and CHERI-RISC-V variants

• Currently exploring interaction with virtualization for servers
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Portability implications for software
• CHERI Clang/LLVM

• Modest pointer/capability abstraction improvements in front-end and IR

• Adapt target back-ends to teach them about capability code generation

• Optimize for architecture-specific code generation

• Optimize for available microarchitectures

• CheriBSD (CHERI support in FreeBSD)

• More clear machine-independent / machine-independent split

• Shift to hybrid capability C in the kernel to improve machine independence

• Various MD kernel updates: boot code, exceptions, PMAP, …

• Clean up APIs, header separation, architecture abstraction

• Various userspace updates: rtld, libcheri, CRT/CSU, …
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Many other research questions

• Can we efficiently impose CHERI protection mechanisms on I/O 
devices and accelerators?

• See Thunderclap work on I/O security (http://thunderclap.io/)

• Does CHERI make managed languages (e.g. Rust) safer or faster 
(e.g. through efficient dynamic checks)?

• Does fine-grained compartmentalisation help mitigate fault injection 
attacks?

• Can CHERI help to mitigate speculative execution attacks?

• Can CHERI be used for enclaves?
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Conclusions
• CHERI provides the hardware with more semantic knowledge of what the 

programmer intended

• Toward the principle of intentional use

• Efficient pointer integrity and bounds checking

• Eliminates buffer overflow/over-read attacks (finally!)

• Provide scalable, efficient compartmentalisation

• Allows the principle of least privilege to be exploited to
mitigate known and unknown attacks

• Large performance improvement over process-based compartmentalisation

• Working with industry to bring the technology to market
• Thanks to sponsors: DARPA, ARM, Google, EPSRC, HEIF, Isaac Newton Trust, Thales E-Security, 

HP Labs
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Additional Topics

1. Our verification and test strategy

2. How to build efficient tagged memory

3. Compressed capabilities 

4. How CHERI helps to mitigate speculative execution attacks

5. : The Perils of Peripherals
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