
Cristofaro Mune

(c.mune@pulse-sec.com)

@pulsoid

S4: Fault Models for improved attacks 
and defenses

SILM Summer School, INRIA (2019)



Case study:

Secure Boot



We are going to…

• Evaluate multiple FI Secure Boot attacks:

- Independently of Injection technique

• Goal: Bypass Secure Secure Boot

- i.e. a boot stage with a wrong signature is validated and executed

• Each attack using a different:

- Fault Model

- Exploit

• For each attack, we evaluate:

- what can be achieved

- which countermeasures may (or may not) be effective

3



Focus

TargetInjection FaultActivation

SW/HW

Glitch Exploit

Fault model

Goal

F
M

• We focus on how to use different faults and Fault Models

• Out of scope: How the fault if is injected 

- Irrelevant (for our purposes)



Countermeasures

TargetInjection FaultActivation

SW/HW

Glitch Exploit Goal

F
M

• Focus:

- Fault Model and Exploit dependent countermeasures

HW (Prevent): 

Laser mesh

EM shielding

HW (Detect):

Voltage 

detectors

Optical 

sensors

HW (Prevent): 

Protecting DVFS 

registers 

HW (Detect):

ECC RAM

SW (Detect):

Redundant checks / 

operations

SW (Mitigate):

Random delays



Secure Boot:

“Instruction Skipping”



Textbook attack

• Already covered by Niek!

- see session 2

• Fault Model: “You are able to selectively skip instructions” 

- Located at “Execution” Level

• Exploit: 

1. “Target conditionals”

2. “Affect Code Flow”

3. Wrong decision on boot stage validation

7



8

Instruction skipping 

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

Execution

Instructions

Instruction 
Skipping

Fault ModelLevel

R
o
o

t 
C

a
u

s
e

Code 
Flow

Exploit Goal

Invalid 
stage 
exec



Relevant countermeasures

• SW-based countermeasures:

- Duplicate checks on “targeted conditionals”

- Introduce random delays for more difficult targeting

- Code flow checks

- …

• Notes:

- Applied after exploit phase: Detection and mitigation

- Fully exploit dependent:

• Assume which piece of code is targeted

- Local: 

• Every targeted piece of code needs to be protected

9
Fully applicable



10

Instruction skipping: Countermeasures 

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

Execution

Instructions

Instruction 
Skipping

Fault ModelLevel

R
o
o

t 
C

a
u

s
e

Exploit

SW-based 
countermeasures

Code 
Flow

Invalid 
stage 
exec



11

Question:

What if boot stages are 

encrypted? 



12

Encrypted Secure Boot



The missing key…

• Encryption key needed for creating a malicious image

• Cannot be obtained via FI…

- With the instruction skipping fault model

• It is commonly believed that:

- FI attacks alone cannot bypass an encrypted Secure Boot

- Encrypting boot stages is a valid FI countermeasure

13

That’s wrong



Secure Boot:

“Instruction Corruption”



Attack

• Fault Model: “Faults can modify instructions”

- (Not only prevent their execution)

- Instruction Level Fault Model

• Instructions can be mutated:

- The “where” may be relevant (in some cases)

• E.g. instructions are fetched encrypted/integrity checked

• Exploit (ARM32 for simplicity): 

1. “Destination register can be changed during memory transfer”

2. PC can be populated with arbitrary data

3. PC jumps immediately to payload



16

Bypassing Encrypted Secure Boot 1/4



17

Bypassing Encrypted Secure Boot 2/4



18

Bypassing Encrypted Secure Boot 3/4



19

Bypassing Encrypted Secure Boot 4/4



20

Resulting Code execution



21

Concretely said…

We turn

ENCRYPTED SECURE BOOT

into

PLAINTEXT UNPROTECTED BOOT

using

A SINGLE GLITCH AND NO KEY!



22

Instruction corruption 

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

Execution

Instructions Instruction 
Corruption

Fault ModelLevel

R
o
o

t 
C

a
u

s
e

Exploit Goal

Invalid 
stage 
exec



New impacts

• Signature verification not performed

- Secure Boot defeated

• Decryption not performed

- Plaintext code execution

• Code execution achieved in verifying context

• ROM-level code execution

23

NOT possible with “Instruction Skipping” fault model



24

Instruction corruption: SW Countermeasures 

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

Execution

Instructions Instruction 
Corruption

Fault ModelLevel

R
o
o

t 
C

a
u

s
e

Exploit Goal

Invalid 
stage 
exec



Secure Boot:

“OTP Transfer”



OTP and Secure Boot



Example



Populating shadow registers



OTP Transfer 1/5



OTP Transfer 2/5



OTP Transfer 3/5



OTP Transfer 4/5



OTP Transfer 5/5



34

Question:

Where can we attack?



ANYWHERE!



ANYWHERE!



ANYWHERE!



Attack

• Fault Model: “Bit flips during HW bus transfers”

- Logic Level

• Target:

- OTP configuration bits

- While being transferred into shadow registers

• Before CPU is released from resets

• Exploit: 

1. OTP configuration bits can be modified

2. Wrong configuration in shadow registers

3. Secure boot code does not execute signature verification

• And possibly stage decryption



39

OTP Transfer

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

Execution

Instructions

Bit flips in 
OTP transfer

Fault ModelLevel

R
o

o
t 
C

a
u

s
e

Exploit Goal

Secure 
boot 

disabled



Analysis

• Integrity of SW execution not affected

• CPU subsystem not the target of the attack!

- OTP subsystem is targeted

• Secure Boot disabled

- Incorrect configuration in shadow registers → used at boot

• Attack BEFORE any SW execution occurs

• Unlikely with previous Fault Models:

- Exploit faults affecting CPU sub-system at runtime

• Instruction representation/decode, Execution

40



41

OTP Transfer: SW Countermeasures 

Fault

Physical

Circuit

Micro-Architecture

Subsystem

Software

“Hardware”

Execution

Instructions

Bit flips in 
OTP transfer

Fault ModelLevel

R
o

o
t 
C

a
u

s
e

Exploit Goal

Secure 
boot 

disabled



Analysis: Countermeasures

• SW-based countermeasures ineffective:

- Integrity of SW control flow not affected

- No SW is executed at fault injection time

• CPU-oriented countermeasures ineffective:

- Exploit leverage faults in a different subsystem (OTP)

• HW-based countermeasures applicable:

- Only if targeting:

• The specific injection technique

• OTP subsystem 

o more general, but localized

42



Conclusions



Fault Models…

• New fault models enable new attacks with:

- Different prerequisites

- Completely new impacts

- Improved effectiveness

- Challenging to be defended against

44



Countermeasures

• Switching fault model may bypass entire classes of 
countermeasures

• Effective defensive design should not assume:

- a specific Fault Model

- a specific Exploit

45





Cristofaro Mune

Product Security Consultant

Contacts

c.mune@pulse-sec.com

mailto:c.mune@pulse-sec.com

