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About VUSec
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● Software protections

● Binary analysis

● Fuzzing

● Network security

● Hardware and OS security

~20 members, 3 faculty
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Assuming secure software, 

what is still possible? 

and what can we do about it?



General-purpose Hardware Attacks (2015-)
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A government entity in a 
certain country: “can we please 

have the Drammer exploit?”

Drammer Spectre/MDS



Understanding These Issues
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Reverse Engineering!

Hardware is (almost) always closed.



Hardware Reverse Engineering at VUSec
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The Rowhammer Problem

We have reduced transistor without caring for reliability/security
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Rowhammer: affects 87% of deployed DDR3 memory, DDR4 as well.

Years later

Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA’14
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Original ISCA 
paper

x86 root, GPZ
Rowhammer.js, TUGraz

Dedup Est Machina, VUSec

Flip Feng Shui, VUSec
Cloud flopping, OSU

Drammer, VUsec

Browser exploitation: hard on x86, not possible on ARM
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Native Rowhammering
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x86: clflush  ARM: DMA memory

From JavaScript: eviction sets



Eviction Sets and Rowhammer
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Building a Practical JS Rowhammer (on Mobile)
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Eviction sets on x86 are slow → few flips

Eviction sets on ARM are very slow → no flips



Hardware Reverse Engineering at VUSec
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Inside a Phone’s SoC

CPU

GPU

DSP

3G/4G

GPS

TPU
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More co-processors

Greater attack surface

IOMMU

IOMMU

Fail to address uarch and 
Rowhammer attacks!



The GLitch Attack

ARM (Android)
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Integrated GPU

Malicious website 
or Ad

Frigo et al., “Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU,” S&P’18

CPU

GPU

DSP

3G/4G

GPS

TPU



Vertex 
Shader

Input
(CPU)

Fragment 
Shader

Output
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Understanding GPUs: The Rendering Pipeline
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Texture

Understanding GPUs: The Rendering Pipeline
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The Adreno 330 GPU Architecture



19

The Adreno 330 GPU Architecture
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GPU Caches

Reverse engineering tool: 

GPU performance counters:

L1_hit, L1_miss, L2_hit, L2_miss

1) Cacheline size

2) Size

3) Associativity

4) Replacement policy



Reverse Engineering Shader
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Cacheline Sizes
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STRIDE = 1

MAX = 1 .. N

L1_miss != 1

L2_miss != 1

L1 cacheline = 16 bytes

L2 cacheline = 64 bytes



Cache Sizes
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STRIDE = cacheline size

MAX = 1 .. N



Cache Sizes
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Replacement Policy
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Typically LRU or some variant

addr1 + addr2 + addr3 + addr4 + addr1 + target

LLC set: addr3 + addr4 + addr1 + target LLC Set

addr1 addr2

addr3addr4

Target

On GPU: FIFO

addr1 + addr2 + addr3 + addr4 + addr1 + target

LLC set: addr2 + addr3 + addr4 + target

Complicates Rowhammer - See paper.



Associativity 
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Goal: find addresses that map to the same cache set

Methodology: Oren et al. eviction set building algorithm

- Pick a pool virtual addresses

- Pick an observer address

- Reduce the pool to a minimal set that evicts observer



Associativity (and address mapping)
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L1 = 16 way set associative

L2 = 8 way set associative

Non-inclusive L2

How to efficiently flush L1 with L2 lines?



28

GPU Caches

GPU caches

+ Small and fast

+ Deterministic

CPU caches (ARM)

- Large and slow

- Random

vs.



Putting All Together

~180 ns
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GLitch
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Exploitation: NaN-boxing
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1.878e+65

*str

arr[]

int

double

string

1 var arr = new Array(100);
2 arr[0] = 1 // int
3 arr[1] = 1.878e+65 // double
4 arr[3] = “Hello World” // string
...

NaN-boxing
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Exploitation: NaN-boxing

1

1.878e+65

*str 0x7fffff8c

0xffffff8c

0x9a8b7c4d

0x9a8b7c4d

- Payloads: Same
- Tags: 1 bit different

tag payload
64 bits

0x7fffff8c

0xffffff8c
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1

1.878e+65

*str1.878e+65

*ptr -> double

Arbitrary Pointer Leak

0x7fffff8c

0xffffff8c

0x9a8b7c4d

0x9a8b7c4d0xffffff8c

Exploitation: Type Flipping
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1

1.878e+65
0x7fffff8c

0xffffff8c

0x9a8b7c4d

0x9a8b7c4d

tag payload

*str
0xffffff8c

*str

double -> *ptr

Arbitrary Read/Write

Exploitation: Type Flipping



End to End Exploitation with GLitch
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2018 Code Blue young researcher award!

2019 best NL security master thesis award!



Meanwhile After Every Rowhammer Talk...
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Question from audience: 

Doesn’t ECC memory fix all of this?



Error-correction Codes (SECDED)

● Original paper demonstrated SECDED not to be enough

● … but exploitation turned out to be difficult

○ ECC implementation is closed 

(guarantees unknown)

○ 1 bit flips not visible, 

2 bit flips crash the system

37

ECC DRAM as a practical secure defense. 
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Recovering ECC Functions
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● Observing signals are not easy at 1Ghz+

○ Need custom interposer

○ Expensive logic analyzer

● Fault injection with syringe needles!

● Short-circuit data lines with Vss

○ High-to-low voltage flips

● ECC error reports allows for ECC function recovery

Cojocar et al., “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” S&P’19



Demo
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Needle Flip Injection Is Too Painful...
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Machine with known ECCMachine with unknown ECC

DRAM DRAM

Informative ECC errors!



Demo

42



Results
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Avoiding Crashes

Detect single flips and merge them for silent corruptions.
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ECC: Replicating Existing Attacks

45Distinguished Practical Paper Award at S&P’19 
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Traditional Cache Attacks
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Shared Last Level Cache

Attacker 

Core

Victim 

Core
if (secret_key[i]) == 1)

{

something();

}

else

{

something_else();

}

if (secret_key[i]) == 1)

{

something();

}

else

{

something_else();

}

if (secret_key[i]) == 1)

{

something();

}

else

{

something_else();

}
DRAM



Attacking CPU-internal Components
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Core

MMU

AnC

ASLR leak

2017



AnC: MMU Leaves a Trace in the CPU Caches
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CPU CacheSecret: randomized 

virtual address
Gras/Razavi et al., “ASLR on the Line: Practical Cache Attacks on the MMU,” NDSS’17



AnC from JavaScript
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Affected Architectures
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Attacking CPU-internal Components
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Core Core

MMU SPEC

AnC

ASLR leak

2017

Spectre

Arbitrary leak

2018
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*ptr;

Points to Secret 

Victim 
Process

Attacker 
Process

L1 Cache

Secret

Mitigations: 
limit the pointer

*ptr;

Cannot point to Secret

Co
ve
rt
 c
ha
nn
elException!

Flush+Reload Array

...

arr[2]

arr[1]

arr[0] Flush

Flush

Flush

arr[*ptr];



Are these spot mitigations enough?
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Attacking CPU-internal Components
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Core Core

MMU SPEC

AnC

ASLR leak

2017

Spectre

Arbitrary leak

2018

Core

LFB

RIDL

Arbitrary leak

2019

Van Schaik et al., “RIDL: Rogue Inflight Data Load,” S&P’19
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Victim 
Process

Secret

Attacker 
Process

L1 Cache

*ptr;

Invalid pointers leak!

CPU Buffers

*ptr;

Leakage across the board, 
bypassing all mitigations.

Cov
ert

 ch
ann

el



What CPU Buffers?
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Performance 
counters and 
leakage

+



Hardware Reverse Engineering at VUSec

58

DRAM

Core

GPU

M
e
m
o
r
y
 
C
o
n
t
r
o
l
l
e
r Rowhammer

Side channels

TLB

MMU

LFB



Theory: Leaking through LFB
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RIDLing
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Not Through CPU Caches

61



LFB Leaks

62

lfb_hit

secret



Sometimes We Get It Wrong..
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● RIDL paper: leakage is primarily through LFBs

● Public disclosure: May 14

● Intel on May 10:

○ There are 4 variants, you only leak through LFB

○ !&#&* (heated exchange)

○ You are leaking through LFB, UC, LP
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More information on: mdsattacks.com



Which CPUs Are Vulnerable?
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1 Year of CVD with Intel

$100,000 bounty award



Demo
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http://www.youtube.com/watch?v=JXPebaGY8RA


Traditional Cache Attacks
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Shared Last Level Cache

Attacker Core Victim Core

DRAM



Proposed Defenses: Cache Partitioning
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Attacker 
Core

Victim 
Core

COLORIS

Page Coloring

PACT’14

Shared 
Cache

CATalyst

Intel CAT

HPCA’17

Shared 
Cache

Cloak

Intel TSX

SEC’17

Shared 
Cache

Attacker 
Core

Victim 
Core

Attacker 
Core

Victim 
Core



Issue: Imperfect Partitioning

Can we make meaningful attacks against the TLB?

- Architecture of the TLB is unknown

- Spatial attacks are difficult

(4KB page size)
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LLC

Core

DRAM

L1

L2

TLB

Gras et al., “Translation Leakaside Buffer: Defeating Cache Side-channel Protections with TLB Attacks,” SEC’18
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Reverse Engineering the TLB Architecture

Goal: find virtual addresses that prime a TLB set

Methodology: Oren et al. eviction set building algorithm

- Pick a pool virtual addresses
- Pick an observer address
- Reduce the pool to a minimal set that evicts observer
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Temporal Attacks with PRIME+PROBE
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Elliptic curve point multiplication in libgcrypt.

Timing of misses in a TLB set 

rather than different sets. 

- Help from a SVM classifier



Example SVM Output
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Impact
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XLATE Attacks (SEC’18) similarly bypasses imperfect partitioning  

Van Schaik et al., “Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder than You Think,” SEC’18



Conclusion
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Ben Gras, Pietro Frigo, Lucian Cojocar, Stephan van Schaik, Alyssa 

Milburn, Sebastian Osterlund, Cristiano Giuffrida, Herbert Bos

Hardware is the new software except it is harder to fix

Reverse engineering is our main tool in academia

We need to invest in open hardware


