
Reverse Engineering Hardware for
Fun and Profit

Kaveh Razavi

About VUSec

2

● Software protections

● Binary analysis

● Fuzzing

● Network security

● Hardware and OS security

~20 members, 3 faculty

3

Assuming secure software,

what is still possible?

and what can we do about it?

General-purpose Hardware Attacks (2015-)

4

A government entity in a
certain country: “can we please

have the Drammer exploit?”

Drammer Spectre/MDS

Understanding These Issues

5

Reverse Engineering!

Hardware is (almost) always closed.

Hardware Reverse Engineering at VUSec

6

DRAM

Core

TLB

MMU

LFB

GPU

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r Rowhammer

Side channels

The Rowhammer Problem

We have reduced transistor without caring for reliability/security

7

Rowhammer: affects 87% of deployed DDR3 memory, DDR4 as well.

Years later

Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA’14

8

Intel
patents

2
0
1
2

2
0
1
4

2
0
1
6

2
0
1
5

Original ISCA
paper

x86 root, GPZ
Rowhammer.js, TUGraz

Dedup Est Machina, VUSec

Flip Feng Shui, VUSec
Cloud flopping, OSU

Drammer, VUsec

Browser exploitation: hard on x86, not possible on ARM

9

Native Rowhammering

10

x86: clflush ARM: DMA memory

From JavaScript: eviction sets

Eviction Sets and Rowhammer

11

addr1

addr2

addr3

addr4

Target

LLC Set DRAM

addr1

addr2

addr3

addr4

Target

Target

addr1 addr2

addr3addr4

Building a Practical JS Rowhammer (on Mobile)

12

Eviction sets on x86 are slow → few flips

Eviction sets on ARM are very slow → no flips

Hardware Reverse Engineering at VUSec

13

DRAM

Core

GPU

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r Rowhammer

Side channels

TLB

MMU

LFB

Inside a Phone’s SoC

CPU

GPU

DSP

3G/4G

GPS

TPU

14

More co-processors

Greater attack surface

IOMMU

IOMMU

Fail to address uarch and
Rowhammer attacks!

The GLitch Attack

ARM (Android)

15

Integrated GPU

Malicious website
or Ad

Frigo et al., “Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU,” S&P’18

CPU

GPU

DSP

3G/4G

GPS

TPU

Vertex
Shader

Input
(CPU)

Fragment
Shader

Output

16

Understanding GPUs: The Rendering Pipeline

Vertex
Shader

Input
(CPU)

Fragment
Shader

Output

17

Texture

Understanding GPUs: The Rendering Pipeline

18

The Adreno 330 GPU Architecture

19

The Adreno 330 GPU Architecture

IOMMU

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r

20

GPU Caches

Reverse engineering tool:

GPU performance counters:

L1_hit, L1_miss, L2_hit, L2_miss

1) Cacheline size

2) Size

3) Associativity

4) Replacement policy

Reverse Engineering Shader

21

Cacheline Sizes

22

STRIDE = 1

MAX = 1 .. N

L1_miss != 1

L2_miss != 1

L1 cacheline = 16 bytes

L2 cacheline = 64 bytes

Cache Sizes

23

STRIDE = cacheline size

MAX = 1 .. N

Cache Sizes

24

Replacement Policy

25

Typically LRU or some variant

addr1 + addr2 + addr3 + addr4 + addr1 + target

LLC set: addr3 + addr4 + addr1 + target LLC Set

addr1 addr2

addr3addr4

Target

On GPU: FIFO

addr1 + addr2 + addr3 + addr4 + addr1 + target

LLC set: addr2 + addr3 + addr4 + target

Complicates Rowhammer - See paper.

Associativity

26

Goal: find addresses that map to the same cache set

Methodology: Oren et al. eviction set building algorithm

- Pick a pool virtual addresses

- Pick an observer address

- Reduce the pool to a minimal set that evicts observer

Associativity (and address mapping)

27

L1 = 16 way set associative

L2 = 8 way set associative

Non-inclusive L2

How to efficiently flush L1 with L2 lines?

28

GPU Caches

GPU caches

+ Small and fast

+ Deterministic

CPU caches (ARM)

- Large and slow

- Random

vs.

Putting All Together

~180 ns

29

GLitch

30

31

Exploitation: NaN-boxing

1

1.878e+65

*str

arr[]

int

double

string

1 var arr = new Array(100);
2 arr[0] = 1 // int
3 arr[1] = 1.878e+65 // double
4 arr[3] = “Hello World” // string
...

NaN-boxing

32

Exploitation: NaN-boxing

1

1.878e+65

*str 0x7fffff8c

0xffffff8c

0x9a8b7c4d

0x9a8b7c4d

- Payloads: Same
- Tags: 1 bit different

tag payload
64 bits

0x7fffff8c

0xffffff8c

33

1

1.878e+65

*str1.878e+65

*ptr -> double

Arbitrary Pointer Leak

0x7fffff8c

0xffffff8c

0x9a8b7c4d

0x9a8b7c4d0xffffff8c

Exploitation: Type Flipping

34

1

1.878e+65
0x7fffff8c

0xffffff8c

0x9a8b7c4d

0x9a8b7c4d

tag payload

*str
0xffffff8c

*str

double -> *ptr

Arbitrary Read/Write

Exploitation: Type Flipping

End to End Exploitation with GLitch

35

2018 Code Blue young researcher award!

2019 best NL security master thesis award!

Meanwhile After Every Rowhammer Talk...

36

Question from audience:

Doesn’t ECC memory fix all of this?

Error-correction Codes (SECDED)

● Original paper demonstrated SECDED not to be enough

● … but exploitation turned out to be difficult

○ ECC implementation is closed

(guarantees unknown)

○ 1 bit flips not visible,

2 bit flips crash the system

37

ECC DRAM as a practical secure defense.

Hardware Reverse Engineering at VUSec

38

DRAM

Core

GPU

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r Rowhammer

Side channels

TLB

MMU

LFB

Recovering ECC Functions

39

● Observing signals are not easy at 1Ghz+

○ Need custom interposer

○ Expensive logic analyzer

● Fault injection with syringe needles!

● Short-circuit data lines with Vss

○ High-to-low voltage flips

● ECC error reports allows for ECC function recovery

Cojocar et al., “Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks,” S&P’19

Demo

40

Needle Flip Injection Is Too Painful...

41

Machine with known ECCMachine with unknown ECC

DRAM DRAM

Informative ECC errors!

Demo

42

Results

43

Avoiding Crashes

Detect single flips and merge them for silent corruptions.

44

ECC: Replicating Existing Attacks

45Distinguished Practical Paper Award at S&P’19

46

Traditional Cache Attacks

47

Shared Last Level Cache

Attacker

Core

Victim

Core
if (secret_key[i]) == 1)

{

something();

}

else

{

something_else();

}

if (secret_key[i]) == 1)

{

something();

}

else

{

something_else();

}

if (secret_key[i]) == 1)

{

something();

}

else

{

something_else();

}
DRAM

Attacking CPU-internal Components

48

Core

MMU

AnC

ASLR leak

2017

AnC: MMU Leaves a Trace in the CPU Caches

49

CPU CacheSecret: randomized

virtual address
Gras/Razavi et al., “ASLR on the Line: Practical Cache Attacks on the MMU,” NDSS’17

AnC from JavaScript

50

Affected Architectures

51

Attacking CPU-internal Components

52

Core Core

MMU SPEC

AnC

ASLR leak

2017

Spectre

Arbitrary leak

2018

53

*ptr;

Points to Secret

Victim
Process

Attacker
Process

L1 Cache

Secret

Mitigations:
limit the pointer

*ptr;

Cannot point to Secret

Co
ve
rt
 c
ha
nn
elException!

Flush+Reload Array

...

arr[2]

arr[1]

arr[0] Flush

Flush

Flush

arr[*ptr];

Are these spot mitigations enough?

54

Attacking CPU-internal Components

55

Core Core

MMU SPEC

AnC

ASLR leak

2017

Spectre

Arbitrary leak

2018

Core

LFB

RIDL

Arbitrary leak

2019

Van Schaik et al., “RIDL: Rogue Inflight Data Load,” S&P’19

56

Victim
Process

Secret

Attacker
Process

L1 Cache

*ptr;

Invalid pointers leak!

CPU Buffers

*ptr;

Leakage across the board,
bypassing all mitigations.

Cov
ert

 ch
ann

el

What CPU Buffers?

57

Performance
counters and
leakage

+

Hardware Reverse Engineering at VUSec

58

DRAM

Core

GPU

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r Rowhammer

Side channels

TLB

MMU

LFB

Theory: Leaking through LFB

59

RIDLing

60

Not Through CPU Caches

61

LFB Leaks

62

lfb_hit

secret

Sometimes We Get It Wrong..

63

● RIDL paper: leakage is primarily through LFBs

● Public disclosure: May 14

● Intel on May 10:

○ There are 4 variants, you only leak through LFB

○ !&#&* (heated exchange)

○ You are leaking through LFB, UC, LP

64

More information on: mdsattacks.com

Which CPUs Are Vulnerable?

65

1 Year of CVD with Intel

$100,000 bounty award

Demo

66

http://www.youtube.com/watch?v=JXPebaGY8RA

Traditional Cache Attacks

67

Shared Last Level Cache

Attacker Core Victim Core

DRAM

Proposed Defenses: Cache Partitioning

68

Attacker
Core

Victim
Core

COLORIS

Page Coloring

PACT’14

Shared
Cache

CATalyst

Intel CAT

HPCA’17

Shared
Cache

Cloak

Intel TSX

SEC’17

Shared
Cache

Attacker
Core

Victim
Core

Attacker
Core

Victim
Core

Issue: Imperfect Partitioning

Can we make meaningful attacks against the TLB?

- Architecture of the TLB is unknown

- Spatial attacks are difficult

(4KB page size)

69

LLC

Core

DRAM

L1

L2

TLB

Gras et al., “Translation Leakaside Buffer: Defeating Cache Side-channel Protections with TLB Attacks,” SEC’18

Hardware Reverse Engineering at VUSec

70

DRAM

Core

GPU

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r Rowhammer

Side channels

TLB

MMU

LFB

Reverse Engineering the TLB Architecture

Goal: find virtual addresses that prime a TLB set

Methodology: Oren et al. eviction set building algorithm

- Pick a pool virtual addresses
- Pick an observer address
- Reduce the pool to a minimal set that evicts observer

71

Temporal Attacks with PRIME+PROBE

72

Elliptic curve point multiplication in libgcrypt.

Timing of misses in a TLB set

rather than different sets.

- Help from a SVM classifier

Example SVM Output

73

Impact

74

XLATE Attacks (SEC’18) similarly bypasses imperfect partitioning

Van Schaik et al., “Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder than You Think,” SEC’18

Conclusion

75

Ben Gras, Pietro Frigo, Lucian Cojocar, Stephan van Schaik, Alyssa

Milburn, Sebastian Osterlund, Cristiano Giuffrida, Herbert Bos

Hardware is the new software except it is harder to fix

Reverse engineering is our main tool in academia

We need to invest in open hardware

