
Page Table-Based Side-Channel Attacks against Intel SGX:
Attacks and Defenses

Raoul Strackx
raoul.strackx@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

Security of Software/Hardware Interfaces, July 8th 2019

raoul.strackx@cs.kuleuven.be

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

The Key Problem
“How do we share a single hardware platform with

multiple users/processes in an easy, fast and secure
way?”

2 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Programmers’ Mistakes
• Arithmetic bugs (e.g., div by zero,

integer overflow, . . .)
• Logical bugs (e.g., Infinite loops, . . .)
• Syntax bugs (e.g., assignment instead

of comparison, . . .)
• Multi-threaded bugs (e.g., deadlocks,

race conditions, . . .)
• Interfacing bugs (e.g., incorrect API

use, . . .)
• Resource bugs (e.g., uninitialized

variables, buffer overflows, . . .)

1 #include <string.h>
2
3 void foo (char ∗bar)
4 {
5 char c[12];
6
7 strcpy(c, bar); // no bounds checking
8 }
9

10 int main (int argc, char ∗∗argv)
11 {
12 foo(argv[1]);
13 }

3 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Programmers’ Mistakes
• Arithmetic bugs (e.g., div by zero,

integer overflow, . . .)
• Logical bugs (e.g., Infinite loops, . . .)
• Syntax bugs (e.g., assignment instead

of comparison, . . .)
• Multi-threaded bugs (e.g., deadlocks,

race conditions, . . .)
• Interfacing bugs (e.g., incorrect API

use, . . .)
• Resource bugs (e.g., uninitialized

variables, buffer overflows, . . .)

3 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Hardening Legacy Software Automatically

• Automatically add security measures during compilation
+ Low effort
+ Can be applied to existing software
- Cannot provide strong security measures
• Example: StackGuard, ASLR, . . .

4 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: More Secure Libraries

• Use libraries that force programmers to think about buffer boundaries
+ Fast
- Does not protect against other vulnerabilities
- Can only be applied to existing software

Replace:
1 strcpy(char ∗dest, char const ∗src);

With:
1 strncpy(char ∗dest, char const ∗src, size_t n);

5 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Use Memory-Safe Languages

• Combine static and run-time checks to avoid vulnerabilities
+ Low overhead
- Cannot be applied to existing software
- Many memory-safe languages rely on a large code base written in an unsafe

language

6 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Verify Software

• Prove mathematically that software behaves as required
+ Very strong security guarantees
- Very labor intensive

7 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Privilege Separation

• Firefox: 6 million LoC

• Windows 7: 40 million LoC
• Linux kernel: 12 million LoC

8 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Privilege Separation

Hypervisor
• Security layer for virtual machine

monitor (a.k.a. hypervisor)
• Optional
• Ring -1 is a representation, it’s more

complicated in practice

9 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Privilege Separation

System Management Mode (SMM)
handles:
• Temperature fluctuations (e.g.,

turning on fans)
• Memory errors
• . . .

10 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Privilege Separation

(Intel) Management Engine
• Separate processor on motherboard
• Always on
• Becoming standard
• Previously used for remote access

(e.g., remotely fix broken OS)
• . . .

11 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Privilege Separation

Is that all of it!?
• Microcode in CPU
• Firmware on peripherals
• . . .
• But let’s stop here

12 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Privilege Separation

+ Easy separation
- (Monolithic) OS and applications are too big to provide strong security
- Microkernels are more difficult to implement, and are not compatible with

(many) existing software
- Inflexible: difficult to use by programmers

13 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Security Measures: Hardware Security Modules

+ Strong, physical separation of sensitive code/data
+ Present in most commodity systems: TPM
- Cannot execute arbitrary code
- Slow

14 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

So Many Options, We Need a New Idea

• Hardened Libraries
• Memory-Safe Languages
• Software Verifications
• Privilege Separation
• Hardware Security Modules

15 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

We need something else

Core Idea:
• Protect small, security sensitive parts of an application
• Use, but don’t trust the underlying (software) layers (e.g., OS)

16 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

We need something else
Example:

Network-level attacker:
• May observe network packets
• . . . re-order them
• . . . drop some

But! TLS . . .
• will prevent an attacker reading network packets
• or modify them
• or re-order the plaintext content

17 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

We need something else

Example: Now imagine: TLS-handling code in a small container
• The Operating System:

• Schedules the process containing the container
• Reads/write (TLS) packets from/to the network card
• . . .

• A kernel-level attacker. . .
• will prevent an attacker reading network packets
• or modify them
• or re-order the plaintext content

18 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

We need something else

Attack model:
• Assume an attacker infiltrated in lower-layers

Security guarantees:
• Complete isolation of protected modules
• We do not (aim to provide) availability guarantees

19 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Protected-Module Architectures

20 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Protected-Module Architectures
Side-note

Many PMAs exists:
• Flicker (2008, CMU)
• SPMs (2010, KULeuven)
• TrustVisor (2010, CMU)
• Fides (2012, KULeuven)
• Sancus (2013, KULeuven)
• Oasis (2013, CMU)
• Software Guard eXtensions (2013, Intel)
• TrustLite (2014, Intel Labs/TU Darmstadt)
• TyTan (2015, Intel Labs/TU Darmstadt)
• . . .

21 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Protected-Module Architectures
Side-note

Many PMAs exists:
• Flicker (2008, CMU)
• SPMs (2010, KULeuven)
• TrustVisor (2010, CMU)
• Fides (2012, KULeuven)
• Sancus (2013, KULeuven)
• Oasis (2013, CMU)
• Software Guard eXtensions (2013, Intel)
• TrustLite (2014, Intel Labs/TU Darmstadt)
• TyTan (2015, Intel Labs/TU Darmstadt)
• . . .

21 /75 Raoul Strackx #PF-based Attacks against Intel SGX

SGX vs PMAs
We’ll use “protected module” as the generic
term, “enclaves” to mean Intel SGX protected
modules specifically

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Protected-Module Architectures

Key primitives:
• Isolation
• Key derivation:

• Sealing
• Attestation

22 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Isolation primitive

“Don’t Miss a Sec” art installation by Monica Bonvicini (2004)

23 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Isolation primitive

“Don’t Miss a Sec” art installation by Monica Bonvicini (2004)

23 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Isolation primitive

“Don’t Miss a Sec” art installation by Monica Bonvicini (2004)

23 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout

27 //secret.c
28 #include "secret.h"
29
30 static int tries_left = 3;
31 static int PIN = 1234;
32 static int secret = 666;
33
34 int ENTRYPOINT get_secret(int provided_pin) {
35 if (tries_left > 0) {
36 if (PIN == provided_pin) {
37 tries_left = 3;
38 return secret;
39 } else {
40 tries_left−−;
41 return 0;
42 }
43 } else
44 return 0;
45 }

24 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout

46 //secret.c
47 #include "secret.h"
48
49 static int tries_left = 3;
50 static int PIN = 1234;
51 static int secret = 666;
52
53 int ENTRYPOINT get_secret(int provided_pin) {
54 if (tries_left > 0) {
55 if (PIN == provided_pin) {
56 tries_left = 3;
57 return secret;
58 } else {
59 tries_left−−;
60 return 0;
61 }
62 } else
63 return 0;
64 }

24 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout

65 static int tries_left = 3;
66 static int PIN = 1234;
67 static int secret = 666;
68
69 int ENTRYPOINT get_secret(int provided_pin) {
70 if (tries_left > 0) {
71 if (PIN == provided_pin) {
72 tries_left = 3;
73 return secret;
74 } else {
75 tries_left−−;
76 return 0;
77 }
78 } else
79 return 0;
80 }

81 void main() {
82 get_secret(1234);
83 }

25 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout

84 static int tries_left = 3;
85 static int PIN = 1234;
86 static int secret = 666;
87
88 int ENTRYPOINT get_secret(int provided_pin) {
89 if (tries_left > 0) {
90 if (PIN == provided_pin) {
91 tries_left = 3;
92 return_secret:
93 return secret;
94 } else {
95 tries_left−−;
96 return 0;
97 }
98 } else
99 return 0;

100 }
101
102 typedef int (∗Func)();
103 void main() {
104 Func get = &return_secret;
105 (∗get)(); // Not allowed!
106 }

26 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout

107 static int tries_left = 3;
108 static int PIN = 1234;
109 static int secret = 666;
110
111 int ENTRYPOINT get_secret(int provided_pin) {
112 if (tries_left > 0) {
113 if (PIN == provided_pin) {
114 tries_left = 3;
115 return secret;
116 } else {
117 tries_left−−;
118 return 0;
119 }
120 } else
121 return 0;
122 }
123
124 void main() {
125 printf("secret = %i\n", secret); // Not allowed!
126 }

27 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout

127 static int tries_left = 3;
128 static int PIN = 1234;
129 static int secret = 666;
130
131 int ENTRYPOINT get_secret(int provided_pin) {
132 if (tries_left > 0) {
133 if (PIN == provided_pin) {
134 tries_left = 3;
135 return secret;
136 } else {
137 tries_left−−;
138 info("wrong pin", tries_left);
139 return 0;
140 }
141 } else
142 return 0;
143 }
144
145 void info(char const∗str, int tries_left) {
146 printf("%s (tries left: %i\n)", tries_left);
147 }

28 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Isolation primitive

• The memory of a protected module can only be accessed by the module
itself.
• Module can only be entered using an entry point.

from \ to
Protected Unprotected

Entry point Code/Data
Protected r w x r w x
Unprotected / other module x r w x

Table: The enforced memory access control model.

29 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to create a protected module

•
•
•

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to create a protected module

• Ask OS for some space
•
•

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to create a protected module

• Ask OS for some space
• Load in the module’s content
•

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to create a protected module

• Ask OS for some space
• Load in the module’s content
• Enable the access control

mechanism

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to create a protected module

• Ask OS for some space
• Load in the module’s content
• Enable the access control

mechanism
What if an attacker modifies any of
these steps?

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to create a protected module

• Ask OS for some space
• Load in the module’s content
• Enable the access control

mechanism
What if an attacker modifies any of
these steps?
See key derivation

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to destroy a protected module

• Write sensitive data out for future
use
•
•

31 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to destroy a protected module

• Write sensitive data out for future
use
• Overwrite sensitive data (e.g., keys,

stack!, . . .)
•

31 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

How to destroy a protected module

• Write sensitive data out for future
use
• Overwrite sensitive data (e.g., keys,

stack!, . . .)
• Disable special memory access

control mechanism

31 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Key Derivation

Problem 1: How to provide each module with its secrets while keeping the setup
public?
Problem 2: How can we guarantee that code executed correctly on a remote
platform?

32 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Key Derivation

Problem 1: How to provide each module with its secrets while keeping the setup
public?
Problem 2: How can we guarantee that code executed correctly on a remote
platform?
Solution: Key derivation functions providing unique keys to unique modules.

32 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Key Derivation

k = kdf (Kplatform,hash(moduleinitial_state))

33 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Key Derivation

k = kdf (Kplatform,hash(moduleinitial_state))

• unique key per enclave per platform!
• (Any) change in enclave→ different

key

33 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Key Derivation

Was the module modified at creation-time?
• (Un)sealing: Try to access old data
• Attestation: Proof the state of the (remote) module

34 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Sealing

Sealing/Unsealing:
• Used to store/retrieve sensitive data for protected modules
• Derive protected module-specific key
• Encrypt and MAC stored data

35 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout
148 static int tries_left = 3;
149 static int PIN = 1234;
150 static int secret = 666;
151
152 void store_state(void) {
153 EncKey k = get_key(SEAL_KEY);
154 write_blob(seal(k, tries_left || PIN || secret));
155 }
156
157 int ENTRYPOINT get_secret(int provided_pin) {
158 if (tries_left > 0) {
159 if (PIN == provided_pin) {
160 tries_left = 3;
161 store_state();
162 return secret;
163 } else {
164 tries_left−−;
165 store_state();
166 return 0;
167 }
168 } else
169 return 0;
170 }

171 void main() {
172 get_secret(1234);
173 }

36 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

An Application’s Memory Layout
174 static int tries_left = 3;
175 static int PIN = 1234;
176 static int secret = 666;
177
178 void store_state(void) {
179 EncKey k = get_key(SEAL_KEY);
180 write_blob(seal(k, tries_left || PIN || secret));
181 }
182
183 int ENTRYPOINT get_secret(int provided_pin) {
184 if (tries_left > 0) {
185 if (PIN == provided_pin) {
186 tries_left = 3;
187 store_state();
188 return secret;
189 } else {
190 tries_left−−;
191 store_state();
192 return 0;
193 }
194 } else
195 return 0;
196 }

Warning: Naive, buggy implementation!

197 void main() {
198 get_secret(1234);
199 }

36 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Attestation

• Local attestation

• Remote attestation

37 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Attestation

• Local attestation

• Remote attestation

37 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Attestation

• Local attestation

• Remote attestation

37 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Remote Attestation
There is a need for remote attestation:
• Processing sensitive data in the cloud
• Simple key derivation does not suffice here
• Newly developed protocols (e.g., Intel EPID)

38 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Introduction
• Announced in 2013
• Available since Skylake processor

generation (2015)
• Use cases:

• Fingerprint readers
• BlueRay disc
• Netflix DRM used to require SGX

for 4K content
• Fortanix:

• Running complete applications in
an enclave

• Enclaved Key management

39 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements

• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves

• Live in userspace
• Isolated from OS/untrusted part of

process
• No syscalls!

• Defend against HW attacker
• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker

• Defend against cold-boot attacks
• Enclaved memory is stored

confidentially, integrity and version
protected in main memory

• Current limit: 128 MiB (96 MiB of
EPC memory)

• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker

• Defend against cold-boot attacks
• Enclaved memory is stored

confidentially, integrity and version
protected in main memory

• Current limit: 128 MiB (96 MiB of
EPC memory)

• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker

• Defend against cold-boot attacks
• Enclaved memory is stored

confidentially, integrity and version
protected in main memory

• Current limit: 128 MiB (96 MiB of
EPC memory)

• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker

• Defend against cold-boot attacks
• Enclaved memory is stored

confidentially, integrity and version
protected in main memory

• Current limit: 128 MiB (96 MiB of
EPC memory)

• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker

• Defend against cold-boot attacks
• Enclaved memory is stored

confidentially, integrity and version
protected in main memory

• Current limit: 128 MiB (96 MiB of
EPC memory)

• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements

• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible

• Upon fault (e.g., page fault)
• Upon external interrupt

• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible
• Sealed storage

• MRENCLAVE: Seal on enclave
measurement

• MRSIGNER: Seal on signer of
enclave

• Attestation
• Architecture must remain

backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible
• Sealed storage
• Attestation

• Both local as remote
• EPID attestation request can

ensure that attestation responses
cannot be linked

• Architecture must remain
backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible
• Sealed storage
• Attestation

• Both local as remote
• EPID attestation request can

ensure that attestation responses
cannot be linked

• Architecture must remain
backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible
• Sealed storage
• Attestation

• Both local as remote
• EPID attestation request can

ensure that attestation responses
cannot be linked

• Architecture must remain
backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Design Goals/Requirements
• Strong isolation of SGX enclaves
• Defend against HW attacker
• Interruptible
• Sealed storage
• Attestation
• Architecture must remain

backwards compatible!
• OS/VMM must remain in charge of

SGX processor reserved memory
• OS/VMM must be able to interrupt

enclave
• Upon fault, control returned to OS

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Generic Overview
Isolation
Key Derivation
Intel SGX

Enclaves Pages: Checks and Managements

Figure: https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

41 /75 Raoul Strackx #PF-based Attacks against Intel SGX

https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Enclaves Pages: Checks and Managements

OS/VMM is in control over:
• Swapping SGX pages in/out SGX

PRM memory
• Enclave memory

creation/destruction
• Calling/Resuming SGX enclaves

HW checks:
• Are enclaves pages loaded correctly

at virtual address
• Are unprotected pages not loaded at

enclave addresses
• TLB entries are always correctly

loaded

42 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Enclaves Pages: Checks and Managements

43 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Enclaves Pages: Checks and Managements

→What happens when an enclave page is not present in memory?

43 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Simple Attack [XCP15]

• Assume WelcomeMessageForFemale
and WelcomeMessageForMale are
located on different pages
• An attacker marks page table entry

for both as not-present
• Execution of WelcomeMessage:

• Will result in a Page Fault (#PF)
• Control is handed back to the

OS/Attacker
• CR2 records faulting page (12 LSB

are cleared)

input-dependent control flow
200 char ∗WelcomeMessage(GENDER s) {
201 char ∗mesg; // GENDER is an enum of MALE and FEMALE
202
203 if(s == MALE)
204 mesg = WelcomeMessageForMale();
205 else
206 // FEMALE
207 mesg = WelcomeMessageForFemale();
208
209 return mesg;
210 }

44 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Simple Attack [XCP15]

• Assume WelcomeMessageForFemale
and WelcomeMessageForMale are
located on different pages
• An attacker marks page table entry

for both as not-present
• Execution of WelcomeMessage:

• Will result in a Page Fault (#PF)
• Control is handed back to the

OS/Attacker
• CR2 records faulting page (12 LSB

are cleared)

input-dependent data access
228 void CountLogin(GENDER s) {
229 if (s == MALE)
230 gMaleCount++;
231 else
232 gFemaleCount++;
233 }

44 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

A Simple Attack [XCP15]

• Assume WelcomeMessageForFemale
and WelcomeMessageForMale are
located on different pages
• An attacker marks page table entry

for both as not-present
• Execution of WelcomeMessage:

• Will result in a Page Fault (#PF)
• Control is handed back to the

OS/Attacker
• CR2 records faulting page (12 LSB

are cleared)

input-dependent data access
245 void CountLogin(GENDER s) {
246 if (s == MALE)
247 gMaleCount++;
248 else
249 gFemaleCount++;
250 }

What if interesting functions/data
resides on the same page?

44 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Page Fault Sequences [XCP15]

45 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Page Fault Sequences [XCP15]

Figure: Extracting data from an enclaved libjpeg library

46 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Closely Related Attacks

Access restrictions in page tables are
still enforced during enclave execution!
• Reading not-present page→ #PF
• Writing not-writable page→ #PF
• Executing not-executable page→

#PF
• Malformed PTE entry→ #PF

47 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Attacking SGX Enclaves Without Page Faults [SP17]

Even absence of #PF leaks information!

48 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Attacking SGX Enclaves Without Page Faults [BWK+17]

Other side-effects of page table walks
still apply as well
• Accessed bits are still set
• Dirty bits are still set
→ Information leaks even without page
faults

49 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Attacking SGX Enclaves Without Page Faults [BWK+17]

Other side-effects of page table walks
still apply as well
• Accessed bits are still set
• Dirty bits are still set
→ Information leaks even without page
faults

49 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Attacking SGX Enclaves Without Page Faults [BWK+17]
Other side-effects of page table walks
still apply as well
• PT entries still end up in the cache

• sizeof(PTE) = 8 bytes
• sizeof(cache line) = 64 bytes
• → coarser access granularity
• → ever growing set of accessed

pages
• → IPI can be fired from another

logical core when a trigger page is
accessed

→ Information leaks even without page
faults

50 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Attacking SGX Enclaves Without Page Faults [BWK+17]
Other side-effects of page table walks
still apply as well
• PT entries still end up in the cache

• sizeof(PTE) = 8 bytes
• sizeof(cache line) = 64 bytes
• → coarser access granularity
• → ever growing set of accessed

pages
• → IPI can be fired from another

logical core when a trigger page is
accessed

→ Information leaks even without page
faults

50 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Requirements

Security Guarantees
• Not all attacks rely on #PFs
• Absence of a #PF also leaks

information
→ There is no silver bullet!

Operational Guarantees for System
Software and Enclaves
• OS/VMM must remain in full control

over all system resources (incl. SGX
PRM memory)
• Do not lock (parts of) enclaves in

memory
• HW should aid in multiplexing SGX

PRM memory
• Do not disable interrupts

• Correctly-written enclaves when not
under attack, should never end up in
a state where they cannot advance

51 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Page Obliviousness [SCNS16]

Key Idea:
• Access all potentially required pages to a staging area.
• Only code/data actually required is copied to staging area.
• Execute/Compute on staging area

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Page Obliviousness [SCNS16]

Key Idea:
• Access all potentially required pages to a staging area.
• Only code/data actually required is copied to staging area.
• Execute/Compute on staging area

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Page Obliviousness [SCNS16]

Assumptions
• Pages can only be unloaded after a page fault
• Cannot be applied to all applications

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Page Obliviousness [SCNS16]

Assumptions
• Pages can only be unloaded after a page fault
• Cannot be applied to all applications

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

T-SGX [SLKP17]

Key Idea:
• Wrap all code in a TSX transaction
• Transactions always start/end at the springboard page
• Each transaction aborts on interrupt/#PF, restart it
• Destruct enclave after 10 aborts of the same transaction

53 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

T-SGX [SLKP17]

Key Idea:
• Wrap all code in a TSX transaction
• Transactions always start/end at the springboard page
• Each transaction aborts on interrupt/#PF, restart it
• Destruct enclave after 10 aborts of the same transaction

53 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

T-SGX [SLKP17]

54 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

T-SGX [SLKP17]

Figure: Transaction sizes are limited [SP17]

Limitations
• Does not detect #PF-less side channels!
• TSX transaction sizes are limited
• Unclear how enclaves can be restarted securely

55 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

T-SGX [SLKP17]

Figure: Transaction aborts more repeatedly when system comes under heavy load[SP17]

Limitations
• Does not detect #PF-less side channels!
• TSX transaction sizes are limited
• Unclear how enclaves can be restarted securely

55 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

SGX-LAPD [FBQL17]

Key Idea:
• SGX enclaves can record the faulting page after a #PF in EXINFO structure
• Upon enclave re-entry: check if #PF occurred
• Only 2 MB boundary crosses are considered harmful

56 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

SGX-LAPD [FBQL17]

Limitations:
• Data accesses are considered future work
• EXINFO is overwritten for each malformed APIC timer interrupt [SLKP17]

56 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Heisenberg [SP17]

Key Idea:
• Hook enclave entry/re-entry→ requires TSX or HW new features
• Preload all required enclave pages in TLB

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Heisenberg [SP17]

Heisenberg-SW
• Suffers from the same problems as T-SGX w.r.t. TSX
• Does prevent all known attacks

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Heisenberg [SP17]

Heisenberg-HW
• New hardware: Hook code pointer called upon enclave ERESUME
• Problem: Maximum SSA stack required

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Heisenberg [SP17]

Performance
• TSX aborts cause significant performance hit, especially when system is

under heavy load

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Heisenberg [SP17]

Limitations
• Requires knowledge of TLB implementation
• Only part of a solution when enclaves are larger than SGX PRM

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Conclusion
• #PF and #PF-less side channels are still an open problem
• What happens when an enclave is larger than SGX PRM?
• We probably need:

• New hardware features
• Language support

58 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Background
Protected-Module Architectures

#PF and #PF-less Controlled Side-Channel Attacks
Defenses

Requirements
Page Obliviousness
T-SGX
SGX-LAPD
Heisenberg

Thank you!

Thank you! Questions?
@raoul_strackx

59 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Research Question

“Can we leverage the segmentation unit
to extract sensitive enclave data?”

60 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Segmentation in 32-bit mode

• Maps variable-length segments logical
address space
• Many different segments

• %CS (code)

• %DS (data)

• %SS (stack)

• %ES

• %FS

• %GS
• G = 1, size = 1 Byte to 1 MB, 1 Byte incr.
• G = 0, size = 4 KB to 4 GB, 4 KB incr.

61 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Segmentation in 32-bit mode

• Maps variable-length segments logical
address space
• Many different segments:

• %CS (code)

• %DS (data)

• %SS (stack)

• %ES

• %FS

• %GS
• G = 1, size = 1 Byte to 1 MB, 1 Byte incr.
• G = 0, size = 4 KB to 4 GB, 4 KB incr.

61 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Interaction Between Segmentation and Intel SGX

• “enclaves abide by all segmentation policies set up by the OS” [Int18]
• but additional security measures:

• Segment base of %CS, %DS, %SS and %ES must be 0x00000000
• Segment selectors/descriptors of %FS and %GS are save/restored on enclave

boundaries
• Segment limits of %CS, %DS, %SS and %ES can still be set

62 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Attack Model

Let’s assume:
• 32-bit enclave
• microcode version 0xba (April 9th, 2017) or older
• kernel-level attacker
• (focus on 4 KiB granular accesses now)

63 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11
12 // limit!
13 void handle_candidate_b() {...}
14
15 void handle_total_votes() {...}

64 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11
12 // limit!
13 void handle_candidate_b() {...}
14
15 void handle_total_votes() {...}

• vote == B→
• vote == A→

64 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11
12 // limit!
13 void handle_candidate_b() {...}
14
15 void handle_total_votes() {...}

• vote == B→ General Protection (#GP) fault
• vote == A→

64 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11
12 // limit!
13 void handle_candidate_b() {...}
14
15 void handle_total_votes() {...}

• vote == B→ General Protection (#GP) fault
• vote == A→ General Protection (#GP) fault!

64 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11
12 // limit!
13 void handle_candidate_b() {...}
14
15 void handle_total_votes() {...}

We need a second information channel!

64 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

SGX-Step

Single-stepping through an
enclave: [VBPS17]
• Precisely configures APIC timer
• Starts the enclave
• Enclave exits immediately after the

first instruction

65 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11 void handle_candidate_b() {...}
12 void handle_total_votes() {...}

• Track vote function
• Schedule APIC interrupt +

extend limit
• Observe execution path

• vote == B→
• vote == A→

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11 void handle_candidate_b() {...}
12 void handle_total_votes() {...}

• Track vote function
• Schedule APIC interrupt +

extend limit
• Observe execution path

• vote == B→
• vote == A→

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11 void handle_candidate_b() {...}
12 void handle_total_votes() {...}

• Track vote function
• Schedule APIC interrupt +

extend limit
• Observe execution path

• vote == B→ #GP fault
• vote == A→

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Proof-of-Concept
1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8 }
9

10 void handle_candidate_a() {...}
11 void handle_candidate_b() {...}
12 void handle_total_votes() {...}

• Track vote function
• Schedule APIC interrupt +

extend limit
• Observe execution path

• vote == B→ #GP fault
• vote == A→ AEX!

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

What happens when we combine Paging/Segmentation attacks?

67 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Attack Model

Let’s assume:
• Enclave is relocatable
• Code is within first 1 MiB of enclave
• microcode version 0xba (April 9th, 2017) or older
• user-level attacker

68 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Combining Segmentation/Paging units

69 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Combining Segmentation/Paging units

69 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Combining Segmentation/Paging units

69 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Combining Segmentation/Paging units

69 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Combining Segmentation/Paging units

eip ≤ limit page access rights (eip + inst size) ≤ limit Fault type

7 - - #GP1
3 3 7 #GP2
3 7 - #PF

70 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Proof of Concept
Extracting Instruction Sizes

Can we Extract Instruction Sizes?

ERESUME

limit

eip rwx

limit

eip rwx

#GP1

ERESUME

limit

eip rwx

limit

eip rwx

ERESUME

limit

eip ---

limit

eip ---

ERESUME

limit

eip ---

limit

eip ---

Executed!

#GP2

Fault
Handler

Fault
Handler

#GP1

#PF3 Byte
Instruction

2 Byte
Instruction

71 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

Mitigations
We observed something interesting:

version release date CPUSVN vulnerable
0x1E unknown 020202ffffff00000000000000000000 Yes
0x2E unknown 020202ffffff00000000000000000000 Yes
0x9E unknown 020202ffffff00000000000000000000 Yes
0x4A unknown 020202ffffff00000000000000000000 Yes
0x8A unknown 020202ffffff00000000000000000000 Yes
0xBA April 9th, 2017 020202ffffff00000000000000000000 No
0xC2 November 16th, 2017 020702ffffff00000000000000000000 No

→ Intel silently patched this vulnerability

72 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

What changed!?

• Not yet incorporated in the manual→ based on observations!
• Placing any segment limit within enclave→ #GP
• Placing limit below enclave base:

• %CS: #GP (used during enclave (re-)entry)
• %DS: #GP (used during enclave (re-)entry)
• %ES: #GP when used! [Gys18]
• %SS: #GP when used! [Gys18]
• %FS: OK (overwritten during enclave (re-)entry)
• %GS: OK (overwritten during enclave (re-)entry)

73 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

References I

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In 26th USENIX Security Symposium (USENIX Security 17), pp. 1041–1056, Vancouver, BC, 2017. USENIX Association.

Y. Fu, E. Bauman, R. Quinonez, and Z. Lin.
S gx-l apd: Thwarting controlled side channel attacks via enclave verifiable page faults.
In International Symposium on Research in Attacks, Intrusions, and Defenses, pp. 357–380. Springer, 2017.

J. Gyselinck.
Segmentation-based side-channel attacks on enclaved execution.
Master’s thesis, KU Leuven, 2018.

Intel.
Intel 64 and IA-32 Architectures Software Developer’s Manual – Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C and 3D, May 2018.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets.
In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, ASIACCS’16, pp. 317–328, New York, NY,
USA, 2016. ACM.

74 /75 Raoul Strackx #PF-based Attacks against Intel SGX

empty

Problem Statement
Background: Segmentation

Attacks
Mitigations

References II

M.-W. Shih, S. Lee, T. Kim, and M. Peinado.
T-SGX: Eradicating controlled-channel attacks against enclave programs.
In Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS 2017), February 2017.

R. Strackx and F. Piessens.
The heisenberg defense: Proactively defending sgx enclaves against page-table-based side-channel attacks, 2017.

J. Van Bulck, F. Piessens, and R. Strackx.
Sgx-step: A practical attack framework for precise enclave execution control.
2017.

Y. Xu, W. Cui, and M. Peinado.
Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In 36th IEEE Symposium on Security and Privacy. IEEE, May 2015.

75 /75 Raoul Strackx #PF-based Attacks against Intel SGX

	Background
	Protected-Module Architectures
	A Generic Overview
	Isolation
	Key Derivation
	Intel SGX

	#PF and #PF-less Controlled Side-Channel Attacks
	Defenses
	Requirements
	Page Obliviousness
	T-SGX
	SGX-LAPD
	Heisenberg

	Appendix
	Problem Statement
	Background: Segmentation
	Attacks
	Proof of Concept
	Extracting Instruction Sizes

	Mitigations

