Page Table-Based Side-Channel Attacks against Intel SGX:
Attacks and Defenses

Raoul Strackx
raoul.strackx@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

Security of Software/Hardware Interfaces, July 8" 2019

DistriN=t

raoul.strackx@cs.kuleuven.be

Background

The Key Problem

“How do we share a single hardware platform with
multiple users/processes inoan easy, fast and secure
way?”

———

2/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background

Programmers’ Mistakes

3775

Arithmetic bugs (e.g., div by zero,
integer overflow, . . .)

Logical bugs (e.g., Infinite loops, .. .)
Syntax bugs (e.g., assignment instead
of comparison, ...)

Multi-threaded bugs (e.g., deadlocks,
race conditions, ...)

Interfacing bugs (e.g., incorrect API
use, ...)

Resource bugs (e.g., uninitialized
variables, buffer overflows, . ..)

Raoul Strackx

#PF-based Attacks against Intel SGX

1 #include <string.h>
2
3void foo (char xbar)

H{

5 charc[12];

7 strepy(c, bar); // no bounds checking
8

9

10int main (int argc, char ==argv)
14

12 foo(argv[1]);

13}

OistriN=t

Background

Programmers’ Mistakes

3775

Arithmetic bugs (e.g., div by zero,
integer overflow, . . .)

Logical bugs (e.g., Infinite loops, .. .)

Syntax bugs (e.g., assignment instead
of comparison, ...)

Multi-threaded bugs (e.g., deadlocks,
race conditions, ...)

Interfacing bugs (e.g., incorrect API
use, ...)

Resource bugs (e.g., uninitialized
variables, buffer overflows, . ..)

Raoul Strackx #PF-based Attacks against Intel SGX

Growth

c[o]l

Char c[12]

c[11]

Char *bar

Saved Frame pointer

Return Address

Parent Routine's Stack

OistriN=t

Background

Security Measures: Hardening Legacy Software Automatically

Automatically add security measures during compilation
Low effort

Can be applied to existing software

Cannot provide strong security measures

Example: StackGuard, ASLR, ...

475 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background

Security Measures: More Secure Libraries

e Use libraries that force programmers to think about buffer boundaries
+ Fast

- Does not protect against other vulnerabilities

- Can only be applied to existing software

Replace:

1 strepy(char *dest, char const xsrc);

With:

1 strncpy(char =dest, char const =src, size_tn);

5/75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Background

Security Measures: Use Memory-Safe Languages

e Combine static and run-time checks to avoid vulnerabilities
+ Low overhead
- Cannot be applied to existing software

- Many memory-safe languages rely on a large code base written in an unsafe
language

6 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background

Security Measures: Verify Software

¢ Prove mathematically that software behaves as required
+ Very strong security guarantees
- Very labor intensive

7175 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Background

Security Measures: Privilege Separation

e Firefox: 6 million LoC

e Windows 7: 40 million LoC
e Linux kernel: 12 million LoC

8/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

Background

Security Measures: Privilege Separation

Hypervisor
App M App m fing 3 * Security layer for virtual machine

e Optional
* Ring -1 is a representation, it's more
TPM mm complicated in practice

—

9/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

Background

Security Measures: Privilege Separation

App H App m ring 3 System Management Mode (SMM)

, handles:
* Temperature fluctuations (e.g.,
. - ..

10/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

Background

Security Measures: Privilege Separation

o | o |

hypervisor ring -1

ring 3 (Intel) Management Engine
ring 0 * Separate processor on motherboard
e Always on

e Becoming standard
S s e el el 2 ring -2 e Previously used for remote access
(e.g., remotely fix broken OS)

management engine ring -3

11/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

Background

Security Measures: Privilege Separation

S - R
. Is that all of it!?
ring 0
¢ Microcode in CPU
i foicd L ring -1 e Firmware on peripherals
system management mode ring -2 ® ..
management engine ring -3 * Butlet's stop here

12/75 Raoul Strackx #PF-based Attacks against Intel SGX

DistriN=t

Background

Security Measures: Privilege Separation

+ Easy separation
- (Monolithic) OS and applications are too big to provide strong security

- Microkernels are more difficult to implement, and are not compatible with
(many) existing software

- Inflexible: difficult to use by programmers

13775 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background

Security Measures: Hardware Security Modules

+ Strong, physical separation of sensitive code/data
+ Present in most commaodity systems: TPM

- Cannot execute arbitrary code

- Slow

14 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Background

So Many Options, We Need a New |dea

Hardened Libraries
Memory-Safe Languages
Software Verifications
Privilege Separation
Hardware Security Modules

15775 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

We need something else

Core Idea:
¢ Protect small, security sensitive parts of an application
e Use, but don’t trust the underlying (software) layers (e.g., OS)

16 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

We need something else

Example:

Network-level attacker:
e May observe network packets
e _..re-order them
e ...drop some
But! TLS ...
e will prevent an attacker reading network packets
® or modify them
e or re-order the plaintext content

17 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

We need something else

Example: Now imagine: TLS-handling code in a small container

® The Operating System:
e Schedules the process containing the container
® Reads/write (TLS) packets from/to the network card
[]
¢ A kernel-level attacker. ..
¢ will prevent an attacker reading network packets
® or modify them
e or re-order the plaintext content

18 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

We need something else

Attack model:
e Assume an attacker infiltrated in lower-layers

Security guarantees:
e Complete isolation of protected modules
¢ We do not (aim to provide) availability guarantees

19775 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Protected-Module Architectures

sgx enclaves

app | app | Appelf App | ring3
kernel ring 0

hypervisor ; ring -1

system management mode ring -2
management engine ring -3

El -

20 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N :t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Protected-Module Architectures

Side-note
Many PMAs exists:

¢ Flicker (2008, CMU)

SPMs (2010, KULeuven)

TrustVisor (2010, CMU)

Fides (2012, KULeuven)

Sancus (2013, KULeuven)

Oasis (2013, CMU)

Software Guard eXtensions (2013, Intel)
TrustLite (2014, Intel Labs/TU Darmstadt)
TyTan (2015, Intel Labs/TU Darmstadt)

21 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Protected-Module Architectures

Side-note
Many PMAs exists:
¢ Flicker (2008, CMU) SGX vs PMAs
* SPMs (2010, KULeuven) We'll use “protected module” as the generic
* TrustVisor (2010, CMU) term, “enclaves” to mean Intel SGX protected
* Fides (2012, KULeuven) modules specifically
e Sancus (2013, KULeuven)
¢ Qasis (2013, CMU)
e Software Guard eXtensions (2013, Intel)
e TrustLite (2014, Intel Labs/TU Darmstadt)
e TyTan (2015, Intel Labs/TU Darmstadt)
[)

21 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Protected-Module Architectures

Key primitives:

e |solation
e Key derivation:
® Sealing

e Attestation

22 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Isolation primitive

“Don’'t Miss a Sec” art installation by Monica Bonvicini (2004)

23 /75 Raoul Strackx #PF-based Attacks against Intel SGX

DistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Isolation primitive

“Don’'t Miss a Sec” art installation by Monica Bonvicini (2004)

23 /75 Raoul Strackx #PF-based Attacks against Intel SGX

DistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Isolation primitive

“Don’'t Miss a Sec” art installation by Monica Bonvicini (2004)

23 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Protected-Module Architectures

An Application’s Memory Layout

A Generic Overview
Isolation

Key Derivation

Intel SGX

27 //secret.c

28 #include "secret.h"

29

30 static int tries_left = 3;

31 static int PIN = 1234;

32 static int secret = 666;

33

34int ENTRYPOINT get_secret(int provided_pin) {
35 if (tries_left > 0) {

36 if (PIN == provided_pin) {

37 tries_left = 3;
38 return secret;
39 }else {
40 tries_left——;
41 return 0;
42)
43 }Yelse
44 return 0;
45}
24 /75 Raoul Strackx

#PF-based Attacks against Intel SGX

Application's
stac|

]

Application's
heap

Application's
machine code

Application's
GoT
Application's
PLT
Application's
static data

libc.so

Id.so

uld

v

OistriN=t

Protected-Module Architectures

An Application’s Memory Layout

A Generic Overview
Isolation

Key Derivation

Intel SGX

46 //secret.c

47 #include "secret.h"

48

49 static int tries_left = 3;

50 static int PIN = 1234;

51 static int secret = 666;

52

53int ENTRYPOINT get_secret(int provided_pin) {
54 if (tries_left > 0) {

55 if (PIN == provided_pin) {

56 tries_left = 3;
57 return secret;
58 }else {
59 tries_left——;
60 return 0;
61}
62 }else
63 return 0;
24 /75 Raoul Strackx

#PF-based Attacks against Intel SGX

|

module's
stack

module’s
heap

module's
machine code

Application’s
stacl

Application's
heap

A

Application's
machine code

Application's
GoT

Application’s
PLT

Application's
static data

OistriN=t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
. . y
An Application’s Memory Layout
65 static int tries_left = 3; module's
66 static int PIN = 1234; stack
67 static int secret = 666;
68 module's
69int ENTRYPOINT get_secret(int provided_pin) { heap

70 if (tries_left > 0) { entrypoints, g ;
71 if (PIN == provided_pin) { /" module's

machine code

72 tries_left = 3; /

73 return secret; |

74 }else { ‘\ -

75 tries_left— —; \ Application's

76 return 0; \ stack

77} \

78 }else get_secret(1234) \ —

79 return 0; \ Application's

80} \ heap

_—

Application's

81 void main() { machine code

82 get_secret(1234);

83}

Lil
25775 Raoul Strackx #PF-based Attacks against Intel SGX ~ D | Stl‘l N _t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
. . ;
An Application’s Memory Layout
| J
84 static int tries_left = 3;
85 static int PIN = 1234; module's
86 static int secret = 666; stack
87 .
88int ENTRYPOINT get_secret(int provided_pin) { ey
89 if (tries_left > 0) {
90 if (PIN == provided_pin) { module's
91 tries_left = 3; machine code
92 return_secret:
93 return secret;
94 }else { >k Application's
95 tries_left— —; { stack
96 return 0;
97} return_secret()
98 }else Application's
99 return 0; heap
100}
101
102 typedef int (xFunc)(); Application's
103 void main() { machine code
104 Func get = &return_secret;

105 (=get)(); / Not allowed!
106}

26 /75 B Raoul Strackx B #PF-based Attacks against Intel SGX r D | Stl‘l N _t

Protected-Module Architectures

An Application’s Memory Layout

A Generic Overview
Isolation

Key Derivation

Intel SGX

107 static int tries_left = 3;

108 static int PIN = 1234;

109 static int secret = 666;

110

111int ENTRYPOINT get_secret(int provided_pin) {
112 if (tries_left > 0) {

113 if (PIN == provided_pin) {

114 tries_left = 3;
115 return secret;
116 } else {

117 tries_left——;
118 return 0;
119}

120 }else

121 return 0;

122}

123

124 void main() {
125 printf("secret = %i\n", secret); // Not allowed!
126}

27 /75 Raoul Strackx #PF-based Attacks against Intel SGX

\E

module's
stack

module's
heap

module's
machine code
ret

Application's
stack

Application's
heap

Application's
machine code

" DistriN=t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
. . ;
An Application’s Memory Layout
e
127 static int tries_left = 3; module's
128 static int PIN = 1234; stack
129 static int secret = 666;
130 module's
131int ENTRYPOINT get_secret(int provided_pin) { heap
132 if (tries_left > 0) { entrypoints o
133 if (PIN == provided_pin) { opodule's
134 tries_left = 3;
135 return secret;
136 } elge { Application's
137 tries_left——; / stack
138 info("wrong pin", tries_left); info(wrong_pin, 2) /
139 return 0; /J
140 } | Application's
141 }else [heap
142 return 0; \
143} \\
144 > Application's
145 void info(char constxstr, int tries_left) { machine code
146 printf("%s (tries left: %i\n)", tries_left);
147}

Liniv barnal

28 /75 Raoul Strackx #PF-based Attacks against Intel SGX - D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Isolation primitive

e The memory of a protected module can only be accessed by the module
itself.

¢ Module can only be entered using an entry point.

from \ to P(otected Unprotected
Entry point | Code/Data
Protected rwx rwx
Unprotected / other module X rwx

Table: The enforced memory access control model.

29 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

How to create a protected module

l
< =

Application's
stack

Application's
heap

Application's
machine code

Application's
GOT

L]
L4 Application's
PLT
[]
Application's
static data

libc.so

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
How to create a protected module
* Ask OS for some space =
[] 7

Application's
Got

Application's
PLT

Application's
static data

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

How to create a protected module

e Ask OS for some space
e | oad in the module’s content

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

module's

machine code

Application’s

stack
Application's
Application's
machine code
Application's

GoT

Application's
PLT

Application’s
static data

OistriN=t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
How to create a protected module
¢ Ask OS for some space
e | oad in the module’s content
e Enable the access control
mechanism
30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

module's
stack

module's
heap

module’s
machine code

Application’s
stack

Application's
Application's
machine code
Application's
GoT

Application's
PLT

Application’s
static data

OistriN=t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
How to create a protected module
e Ask OS for some space
e | oad in the module’s content
e Enable the access control
mechanism
What if an attacker modifies any of
these steps?
30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

module's
stack

module's
heap

module’s
machine code

Application’s
stack

Application's
Application's
machine code
Application's
GoT

Application's
PLT

Application’s
static data

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

How to create a protected module

e Ask OS for some space
¢ | oad in the module’s content

¢ Enable the access control
mechanism
What if an attacker modifies any of
these steps?
See key derivation

30 /75 Raoul Strackx #PF-based Attacks against Intel SGX

module's
stack

module's
heap

module’s
machine code

Application’s
stack

Application's
Application's
machine code
Application's
GoT

Application's
PLT

Application’s
static data

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

How to destroy a protected module

module's
stack

module’s
heap

module’s
machine code

Application's

Application’s

e Write sensitive data out for future _

Application's

use machine code

-

Application's
. GoT
[] Application's
PLT

Application's
static data

31/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
How to destroy a protected module
e Write sensitive data out for future)
use

machine code

e Overwrite sensitive data (e.g., keys,
stack!, ...)

Application's
GoT
Application's
PLT

Application’s
static data

31/75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

How to destroy a protected module

e Write sensitive data out for future
use

e Qverwrite sensitive data (e.g., keys,
stack!, ...)

¢ Disable special memory access
control mechanism

31/75 Raoul Strackx #PF-based Attacks against Intel SGX

Application’s
stack

Application's
Application's
machine code
Application's
GoT

Application's
PLT

Application’s
static data

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Key Derivation

Problem 1: How to provide each module with its secrets while keeping the setup
public?

Problem 2: How can we guarantee that code executed correctly on a remote
platform?

32 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Key Derivation

Problem 1: How to provide each module with its secrets while keeping the setup
public?
Problem 2: How can we guarantee that code executed correctly on a remote

platform?
Solution: Key derivation functions providing unique keys to unique modules.

32 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Key Derivation

module's
machine code

Application’s

Application's

—
Application's

k = kdf(Kpiattorm, hash(moduleinitiai_state)) Lo |

Application's
PLT

Application’s
static data

33 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Key Derivation

k = kdf (Kplatforma hash(modulenitia; state))

® unique key per enclave per platform!

* (Any) change in enclave — different
key

33/75 Raoul Strackx #PF-based Attacks against Intel SGX

module's
stack

module's
heap

module’s
machine code

Application’s
stack

Application's
Application's
machine code
Application's
GoT

Application's
PLT

Application’s
static data

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Key Derivation

Was the module modified at creation-time?
¢ (Un)sealing: Try to access old data
e Attestation: Proof the state of the (remote) module

34 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Sealing

Sealing/Unsealing:
e Used to store/retrieve sensitive data for protected modules
e Derive protected module-specific key
¢ Encrypt and MAC stored data

MAC

35 /75 Raoul Strackx #PF-based Attacks against Intel SGX

DistriN=t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
. . y
An Application’s Memory Layout
icint tri -3 171 void main() {
148 static int tries_left = 3; .
149 static int PIN = 1234; 172~ get_secret(1234);
150 static int secret = 666; 173}
151
152 void store_state(void) {
153 EncKey k = get_key(SEAL_KEY);
154 write_blob(seal(k, tries_left || PIN || secret)); -
19) o
157 int ENTRYPOINT get_secret(int provided_pin) { “‘ffe':"fs
158 if (tries_left > 0) {) pee .
159 if (PIN == provided_pin) { machine code 4 < 2)
160 tries_left = 3; I .
161 store_state(); L T T\ ittty
162 return secret; PPk \
163 }else { get secret(1234) | L |
164 tries_left——; \ Application's = g
165 store_state(); P hean
166 return 0;
167 } S
168 }else mAgS:vﬁ\aech;dse
169 return 0;
170}

Linux kernel

36 /75 Raoul Strackx #PF-based Attacks against Intel SGX - D | Stl‘l N _t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
. . ;
An Application’s Memory Layout
174 static int tries_left = 3; - .
175 static int PIN = 1234; 18; void main() g 1234):
176 static int secret = 666; get_secret()
177 199}
178 void store_state(void) {
179 EncKey k = get_key(SEAL_KEY);
180 write_blob(seal(k, tries_left || PIN || secret));)
181 =
1 82) module’s
. N N . stack
183int ENTRYPOINT get_secret(int provided_pin) { -
184 if (tries_left > 0) { oo
185 if (PIN == provided_pin) { moduer
186 tries_left = 3; machine tade :‘[7 gerkeyEEALIEY
187 store_state(); /
188 return secret; \ Application's |\ veie bobsate)
189 }else { \ stack \
190 tries_left— —; get_secret(1234) JE— |
191 store_state(); \ Application's 4~
192 return 0; heap
193} \ L
194 }else \ Application’s
195 return 0; machine code
196}

36/75 .y Raoul Strackx N #PF-based Attacks against Intel SGX B D | Stl‘l N _t

Protected-Module Architectures

Key Derivation

Attestation

e | ocal attestation

local attestation

e Remote attestation

37 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Attestation

e | ocal attestation

local attestation

K, secure communication

channel

e Remote attestation

37 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Protected-Module Architectures

Key Derivation

Attestation

e | ocal attestation

e Remote attestation

remote attestation

37 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Protected-Module Architectures

Key Derivation

Remote Attestation

There is a need for remote attestation:
e Processing sensitive data in the cloud
e Simple key derivation does not suffice here
¢ Newly developed protocols (e.g., Intel EPID)

nonce || input

€
Enclave Sign, key(enclave_id, input, output, nonce)

38 /75 Raoul Strackx #PF-based Attacks against Intel SGX

Challenger

OistriN=t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Introduction

e Announced in 2013

¢ Available since Skylake processor
generation (2015)
e Use cases:
® Fingerprint readers
* BlueRay disc
* Netflix DRM used to require SGX
for 4K content
® Fortanix:
® Running complete applications in
an enclave
® Enclaved Key management

te

39 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

Strong isolation of SGX enclaves
Defend against HW attacker

|
Interruptible
Sealed storage

Attestation

Architecture must remain
backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
Design Goals/Requirements
e Strong isolation of SGX enclaves
® Live in userspace) _sgx enclaves
® |solated from OS/untrusted part of [App H App] Appa:l:H App | ring3
process (: fing 0
® No syscalls! kernel 1 K
e Defend against HW attacker hypervisor ring -1
° |nterruptib|e system management mode } ring -2
e Sealed Storage ' management engine | ring -3
* Attestation M‘ mem | HDD ‘
¢ Architecture must remain

backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

e Strong isolation of SGX enclaves
Defend against HW attacker

* Defend against cold-boot attacks

® Enclaved memory is stored
confidentially, integrity and version
protected in main memory

e Current limit: 128 MiB (96 MiB of
EPC memory)

System

Memory

Interruptible
Sealed storage
Attestation

Architecture must remain
40/75) Raoul Strackx) #PF-based Attacks against Intel SGX D | Stl‘l N :t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

e Strong isolation of SGX enclaves
¢ Defend against HW attacker
* Defend against cold-boot attacks
® Enclaved memory is stored
confidentially, integrity and version
protected in main memory
e Current limit: 128 MiB (96 MiB of
EPC memory)

Interruptible
Sealed storage
Attestation

Architecture must remain
40/75) Raoul Strackx) #PF-based Attacks against Intel SGX D | Stl‘l N :t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

e Strong isolation of SGX enclaves
¢ Defend against HW attacker
® Defend against cold-boot attacks
® Enclaved memory is stored
confidentially, integrity and version System
protected in main memory — Memory
e Current limit: 128 MiB (96 MiB of
EPC memory)

Interruptible
Sealed storage
Attestation

Architecture must remain
40/75) Raoul Strackx) #PF-based Attacks against Intel SGX D | Stl‘l N :t

Protected-Module Architectures

Design Goals/Requirements

e Strong isolation of SGX enclaves
¢ Defend against HW attacker

* Defend against cold-boot attacks

® Enclaved memory is stored
confidentially, integrity and version
protected in main memory

® Current limit: 128 MiB (96 MiB of
EPC memory)

Interruptible

Sealed storage
Attestation

Architecture must remain

a0/m75)

Raoul Strackx)

#PF-based Attacks against Intel SGX

A Generic Overview
Isolation

Key Derivation

Intel SGX

System
Memory

Jeo3ks93 7w

NE

N2

DistriN=t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
Design Goals/Requirements
e Strong isolation of SGX enclaves
¢ Defend against HW attacker
® Defend against cold-boot attacks Processor Reserved Memory+
* Enclaved memory is stored S Reserved or HW use
confidentially, integrity and version Hardware Reserved
protected in main memory Implementation Specific
® Current limit: 128 MiB (96 MiB of
EPC memory) EPC
e Interruptible
e Sealed storage
e Attestation Ly Reserved for HW use

Architecture must remain

40 /75) Raoul Strackx) #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview

Protected-Module Architectures Isolation
Key Derivation
Intel SGX
Design Goals/Requirements
e Strong isolation of SGX enclaves
* Defend against HW attacker SSh Sk s
* Interruptible o [—
* Upon fault (e.g., page fault) — o
* Upon external interrupt o
e Sealed storage e
. SECS. FRAN .L\.\ZE GRP_0
e Attestation (npases) {:
e Architecture must remain -

backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

Strong isolation of SGX enclaves
Defend against HW attacker
Interruptible

Sealed storage (co‘de)(dalta)(size)(.)IG selcretj

® MRENCLAVE: Seal on enclave
measurement Kdf

® MRSIGNER: Seal on signer of
enclave

Attestation

Architecture must remain
backwards compatible!

key

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

Strong isolation of SGX enclaves

Defend against HW attacker

Interruptible

Sealed storage local attestation

Attestation A

® Both local as remote

* EPID attestation request can
ensure that attestation responses
cannot be linked

Architecture must remain
backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

Strong isolation of SGX enclaves

Defend against HW attacker

Interruptible

Sealed storage local attestation

Attestation A B

® Both local as remote

* EPID attestation request can
ensure that attestation responses N> secure communication
cannot be linked

Architecture must remain
backwards compatible!

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Design Goals/Requirements

Strong isolation of SGX enclaves
Defend against HW attacker

Interruptible v
Sealed storage ‘ A

Attestation

® Both local as remote

* EPID attestation request can
ensure that attestation responses
cannot be linked

Architecture must remain
backwards compatible!

QE
(intel)

Long-term secref

Privacy friendly
attestation protocol

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview

Protected-Module Architectures Isolation
i
Design Goals/Requirements

e Strong isolation of SGX enclaves
e Defend against HW attacker sgx enclaves
e |nterruptible [App H App] Appgjﬂ App | ring3
* Sealed storage ' ormel | fing0
* Atte§tatlon . ‘ hypervisor ; ring -1
e Architecture must remain

backwards compatible! system management mode ring -2

* OS/VMM must remain in charge of ' management engine ‘ ring -3

SGX processor reserved memory

e OS/VMM must be able to interrupt m‘ Mem HDD ‘

enclave
e Upon fault, control returned to OS

40 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

A Generic Overview
Protected-Module Architectures Isolation

Key Derivation

Intel SGX

Enclaves Pages: Checks and Managements

41/75

Intel® SGX and Side-Channels

By Simon Johnson, published on March 16, 2017, updated February 27, 2018 | Translate >

Since launching Intel® Software Guard Extensions (Intel® SGX) on 6th Generation Intel® Core™
processors in 2015, there have been a number of academic articles looking at various usage models and
the security of Intel SGX. Some of these papers focus on a class of attack known as a side-channel attack,
where the attacker relies on the use of a shared resource to discover information about processing
occurring in some other privileged domain that it does not have direct access to.

In general, these research papers do not demonstrate anything new or unexpected about the Intel SGX
architecture. Intel makes this clear In
the security objectives for Intel SGX, which we published as part of our workshop tutorial at the International
Symposium on Computer Architecture in 2015, the slides for which can be found here [slides 109-121], and
in the Intel® SGX SDK Developer's Manual.

Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

https://software.intel.com/en-us/articles/intel-sgx-and-side-channels

#PF and #PF-less Controlled Side-Channel Attacks

Enclaves Pages: Checks and Managements

HW checks:

® Are enclaves pages loaded correctly
at virtual address

OS/VMM is in control over:

e Swapping SGX pages in/out SGX

PRM memory
e Are unprotected pages not loaded at

enclave addresses

e TLB entries are always correctly
loaded

e Enclave memory
creation/destruction

¢ Calling/Resuming SGX enclaves

42 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Enclaves Pages: Checks and Managements

Virtual

Paging Unit
Address 9ing

Page Tables

Segmentation Linear
Unit Address

Physical

B Trusted B Untrusted Address

43 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Enclaves Pages: Checks and Managements

Virtual
Address

Paging Unit

Page Tables

Linear
Address

Segmentation
Unit

Physical
B Trusted B Untrusted Address

— What happens when an enclave page is not present in memory?

43 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

A Simple Attack [XCP15]

¢ Assume WelcomeMessageForFemale

and WelcomeMessageForMale are input-dependent control flow
Iocated on dlfferent pages 200 char «WelcomeMessage(GENDER s) {
201 char xmesg; / GENDER is an enum of MALE and FEMALE

e An attacker marks page table entry 22

203 if(s == MALE
for bOth as nOt'present 204 I(nswesg :WeIcZomeMessageForMale();
. 205 else

e Execution of WelcomeMessage: 206 /| FEMALE
. . 207 = Well M ForF le();
e Will result in a Page Fault (#PF) oo o0~ WelcomellessageFrFemsle

¢ Control is handed back to the Sy oL mese:

OS/Attacker

® CR2 records faulting page (12 LSB
are cleared)

44 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

A Simple Attack [XCP15]

¢ Assume WelcomeMessageForFemale
and WelcomeMessageForMale are
located on different pages

e An attacker marks page table entry
for both as not-present
e Execution of WelcomeMessage:
® Will result in a Page Fault (#PF)
e Control is handed back to the
OS/Attacker
® CR2 records faulting page (12 LSB
are cleared)

input-dependent data access

228 void CountLogin(GENDER s) {
229 if (s == MALE)

230 gMaleCount++;

231 else

232 gFemaleCount++;

233}

44 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

A Simple Attack [XCP15]

¢ Assume WelcomeMessageForFemale

and Wel M ForMale are .
ercomefiessagerortiale input-dependent data access

located on different pages
245 void CountLogin(GENDER s) {
e An attacker marks page table entry 24 if(s-=mALE)

247 gMaleCount++;

for both as not-present 243 else
. 249 gFemaleCount++;
e Execution of WelcomeMessage: 250}

® Will result in a Page Fault (#PF)

® Control is handed back to the
OS/Attacker

® CR2 records faulting page (12 LSB
are cleared)

What if interesting functions/data
resides on the same page?

44 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Page Fault Sequences [XCP15]

Page-level control transfers i Source code
Page A i f1() {
| f2();
£3();
-
fa(), f5()
RN S 2 O B 3() {
Code page fault sequence: '124(); '125():
|A, B, D]B/A, C,D|C,A - -
4 5

45 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

#PF and #PF-less Controlled Side-Channel Attacks

Page Fault Sequences [XCP15]

Original Recovered Original Recovered

%
i
nipr]
@)

Figure: Extracting data from an enclaved libjpeg library

46 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

#PF and #PF-less Controlled Side-Channel Attacks

Closely Related Attacks

Access restrictions in page tables are
still enforced during enclave execution!

e Reading not-present page — #PF
e Writing not-writable page — #PF

e Executing not-executable page —
#PF Physical

B Trusted W Untrusted Address
e Malformed PTE entry — #PF

Virtual

Paging Unit
Address 9ng

Page Tables

Linear
Address

Segmentation
Unit

47 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Attacking SGX Enclaves Without Page Faults [SP17]

source code EPC memory

. void analyze_genome(dna_sample_t *sample, :

report_t *report) _‘analyze_genome:
| :

RO . o 5 | Coetect aioraer w2
: if (detect_disorder_xyz(sample)) /\

i add description xya{ report ;T 5 o

[0 present page
evicted page

Even absence of #PF leaks information!

48 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Attacking SGX Enclaves Without Page Faults [BWK*17]

Other side-effects of page table walks
still apply as well

Virtual

Paging Unit

Address

e Accessed bits are still set
¢ Dirty bits are still set

Linear
Address

Segmentation
Unit

4 Page Tables

— Information leaks even without page
faU|tS W Trusted W Untrusted

49 /75 Raoul Strackx #PF-based Attacks against Intel SGX

Physical
Address

OistriN=t

#PF and #PF-less Controlled Side-Channel Attacks

Attacking SGX Enclaves Without Page Faults [BWK*17]

Bit Contents
Position(s)
. oP) Present; must be 1 to map a 4-KByte page
Other side-effects of page table walks | oot 0,y ot e sl o e ¥y P ety ey G S 25
. 2(urs) gsse]r/suparv\sur if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
till apply I
S I a aS We 3(PWT) Page-level write-through: indirectly determines the memory type used to access the 4-KByte page referenced by

this entry (see Section 4.

Y Acce S Sed b Its are Stl ” set 4(PCD) | Page level coche disabl;indirectly determines the memory type used t access the 4 KByt page referenced by his

entry (see Section 49.2)

S®) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 48)
'Y D i rty b i‘ts are St i I I S et 60) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 48)
7(PAT) | Indirecty determines the memory type used to access the 4-KByte page referenced by this enry (see Section 4.92)
. . 80 Globalf CRAPGE = 1, determines whether the translation i globa (e Section 4.10) ignored otherwise

— Information leaks even without page
(M-1112 | Physical address of E s entry

faults i
ses2 gnored
6259 Protection key; f CRAPKE = 1, determines the protection key of the page (see Secton 46.2): gnored otherwise
63(XD) | IfIA32_EFERNXE = 1, execute-disable (I 1, nstructon fetches are not allowed from the 4-KByte page contralled by

this entry; see Section 46, otherwise, reserved (must be 0)

49 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Attacking SGX Enclaves Without Page Faults [BWK*17]

Other side-effects of page table walks

still apply as well

e PT entries still end up in the cache o ww em am o 0

sizeof (PTE) = 8 bytes I e
sizeof (cache line) = 64 bytes
— coarser access granularity
— ever growing set of accessed
pages
® — [Pl can be fired from another

logical core when a trigger page is N J‘"’

accessed

— Information leaks even without page
faults

9

e ——
L Physical Addr
e]
Page-Directory- > PDE with PS=0 a0

Pointer Table 4o~ Page Table
Page-Directory

1 4-KByte Page

PDPTE

A9

50 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

#PF and #PF-less Controlled Side-Channel Attacks

Attacking SGX Enclaves Without Page Faults [BWK*17]
Other side-effects of page table walks
still apply as well

e PT entries still end up in the cache
sizeof (PTE) = 8 bytes

sizeof (cache line) = 64 bytes

— coarser access granularity

— ever growing set of accessed

pages

® — |IPI can be fired from another
logical core when a trigger page is
accessed

— Information leaks even without page
faults

50 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Strl N :t

Defenses

Requirements

Security Guarantees
e Not all attacks rely on #PFs

e Absence of a #PF also leaks
information

— There is no silver bullet!

51/75 Raoul Strackx

#PF-based Attacks against Intel SGX

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Operational Guarantees for System
Software and Enclaves
o OS/VMM must remain in full control

over all system resources (incl. SGX
PRM memory)

® Do not lock (parts of) enclaves in
memory

® HW should aid in multiplexing SGX
PRM memory

® Do not disable interrupts

e Correctly-written enclaves when not
under attack, should never end up in
a state where they cannot advance

OistriN=t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Page Obliviousness [SCNS16]

Data Staging Area

P1| e
; ; Table 1

P2 :

Table[idx]

Selector

Key Idea:
e Access all potentially required pages to a staging area.
¢ Only code/data actually required is copied to staging area.
e Execute/Compute on staging area

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD

Defenses X
Heisenberg

Page Obliviousness [SCNS16]

| foo (int x, int y)
20 {

3 z=2+y
4 if (z !=x)
5 {

6 if (z < x + 10)
7

8

path_c ()
else 863
9 path_b ()
10 1
11 else
g . path_a() |dummy_pad‘ |dummy_pad| ‘ path_b | | path_c ‘
BBS' BB6' 8BS BB6

e Access all potentially required pages to a staging area.
e Only code/data actually required is copied to staging area.

e Execute/Compute on staging area
DistriN=t

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX

Defenses

Page Obliviousness [SCNS16]

Requirements
Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Vanilla I_.Jn_op_vtimizeq . _O_pt_imized . .
Library Cases Deterministic Multiplexing Deterministic Multiplexing

PF T (ms) PF | Te(ms) | Te(ms) | T(ms) | Te/T (%) | Ovh (%) | Opt PF T (ms) Ovh (%)

AES 4-5 4711 4 7.357 4.013 11.370 64.70 141.35 | 01,02 4 4.566 -3.08

CASTS |2 3435 2 8.050 2.578 10.629 7574 209.47 | 01,02 1 3.086 -10.15

EdDSA 0 10498.674 | O >300000 | OS5 0 13566.122 2922

— >10 hrs — 03 0 [399614244 | 7413.66

I_il\l}a]gzr;[)st powm 0 5318.501 0 >400000 oF i} 3513712 367
SEED 2 1377 2 43559 1.057 5615 EINE] 307.79 | OL.O2 | 1 1311 -4.80 |

Stribog | 5 27397 | 5 | 329.743 | 10.836 | 340.579 9682 | 114313 [OL.O2 | 4 28.563 4.26

Tiger 3 2020 | 3 64.482 0.546 65.029 99.16 3119.69 | OL,02 | 2 1.840 -8.89

Whirlpool | 5 27052 5 | 141.829 | 10.174 | 151.490 9328 459.99 | O1.O2 | 4 23.744 -12.23

OpenSSL | CASTS |2 11249 | 2 17.083 8295 [25378 67.31 12560 [OL,O2 | 1 10.623 -341

(v1.0.2) SEED 2 3.684 | 2 8.998 3737 12.734 70.66 245.69 | OL, 02 1 3.558 -5.57

Average Performance Overhead | 70575.27 -LI0

Assumptions
e Pages can only be unloaded after a page fault
e Cannot be applied to all applications

52 /75 Raoul Strackx

#PF-based Attacks against Intel SGX

OistriN=t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Page Obliviousness [SCNS16]

execution tree. We checked the programs FreeType, Hun-
spell, and libjpeg discussed in [52], they exhibit unbalanced
execution tree. Transforming these programs to exhibit bal-
anced execution tree causes an unacceptable loss in the per-
formance, even without our defense [49]. Hence, we limit
our evaluation to cryptographic implementations.

Assumptions
e Pages can only be unloaded after a page fault
e Cannot be applied to all applications

52 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements
Page Obliviousness

T-SGX
Defenses SGX-LAPD

Heisenberg

1 unsigned status;

2

3 // begin a transaction

4 if ((status = _xbegin()) == _XBEGIN_STARTED) {

5 // execute a transaction

6 [code]

7 // atomic commit

8 _xend(Q);

9 } else {

10 // abort

1}

Key Idea:
[]

Wrap all code in a TSX transaction

e Transactions always start/end at the springboard page
Each transaction aborts on interrupt/#PF, restart it
Destruct enclave after 10 aborts of the same transaction

53 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

T-SGX [SLKP17]

Enclave
entry point

EEXIT/AEX

User space
Kernel space

Key Idea:
e Wrap all code in a TSX transaction
e Transactions always start/end at the springboard page
e Each transaction aborts on interrupt/#PF, restart it
e Destruct enclave after 10 aborts of the same transaction

53 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements
Page Obliviousness

T-SGX
Defenses SG_X'LAPD
Heisenberg
Enclave
¢~ entry point N
Host > - @ execution
T mov entry, rl5 :
program o push rbp entry

jmp begin b
@® EENTER (sprr'ngboard (R-X/'TM o

next: xend() - mov EBL, r15
\h.ngln: xbegin(}‘/l ""“--.._,_‘jmpnnxt-

jmpris o
end: xend() [mov rbx, rcx EBL
jmprls
p abort handler va EB2,rl5
EEXIT/AEX —
® abort
User space ~ ~

Kernel space @ terminate (or interrupted)

Exception
handler

transactional regions
—» control flows

54 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

T-SGX [SLKP17]

zf

20 40 60 80 100

Iransacuons succeeaing (in 7o)

woseep
2 Socomtoon [
0 5 1o 15 20 25 30
Transaction Write Set Size (in KiB) Transaction Read Set Size (in KiB)

0

(a) Write set size (b) Read set size

Figure: Transaction sizes are limited [SP17]

Limitations
® Does not detect #PF-less side channels!
e TSX transaction sizes are limited
e Unclear how enclaves can be restarted securely

55 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

T-SGX [SLKP17]

#ransaction ConMicts per secona

0 10000

0 200 460 600 800 1000
Time interval

he
der

Figure: Transaction aborts more repeatedly when system comes under heavy load[SP17]

Limitations
e Does not detect #PF-less side channels!
e TSX transaction sizes are limited
e Unclear how enclaves can be restarted securely

55 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

SGX-LAPD [FBQL17]

65:0x20: GPRSGXbase

SSA EXINFO

xsave /| oxo: maboR
Fault

6x8: ERRCD Address

/| exc: reservep

GPRSGX

18 EXINFO

oxgs: RIP

0| cprsex

0xAD: EXITINFO.VECTOR

OxAL: EXITINFO.EXIT TYPE

Key Idea:
e SGX enclaves can record the faulting page after a #PF in EXINFO structure

e Upon enclave re-entry: check if #PF occurred
e Only 2 MB boundary crosses are considered harmful

56 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements
Page Obliviousness

T-SGX
Defenses SG'_X'LAPD
Heisenberg
SGX-LAPD [FBQL17]
G5:0x20: GPRSGXbase
SSA EXINFO
xsave] ox0: woom paee
{ | ex8: ERRCD ddress

18 EXINFO

ox88: RIP

0] cprsex

0xAD: EXITINFO.VECTOR

OXAL: EXITINFO.EXIT TYPE

Limitations:
e Data accesses are considered future work
e EXINFO is overwritten for each malformed APIC timer interrupt [SLKP17]

56 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Heisenberg [SP17]

(2) pre-load TLB

Y
TLB

= r w x D linear addr. phys. addr.
c e

®enclu[eenter]/ E ™ 11101 :0: 0x1230 0000 ; 0x0134 000D

encluferesume] n com [11:0 :1:0: 0x1231 0000 | 0x0527 0000

i }
o L |11117011} 0x1232 0000 : 0x0403 0000
g » 1317031 0x1233 0000} 0x1310 0000
c 1110 1] 0x12340000: 0x4010 0000
o Ed
&
@
<
=

Key Idea:
* Hook enclave entry/re-entry — requires TSX or HW new features
¢ Preload all required enclave pages in TLB

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Heisenberg [SP17]

(2) pre-load TLB

Y
TLB

3 r w x D linear addr. phys. addr.
®enclu[eenter]/ § ™11 /0 i1 0} 0x1230 0000 : 0x0134 0000
enclu[eresume] n +o» [11i0 i1 :0 ; 0x1231 0000 | 0x0527 0000
!
o .| 17170 1; 0x1232 0000 ; 0x0403 0000
2 > | 11701 0x1233 0000 : 0x1310 0000
[= 1117011} 0x12340000 : 0x4010 0000
@ Rt
&
@
<
=

Heisenberg-SW
e Suffers from the same problems as T-SGX w.r.t. TSX
¢ Does prevent all known attacks

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Heisenberg [SP17]

call gen_otp

set block-eresume bit
1/—\ SSA stack

Y <oun oo g
S 5 ur; @ update g @

» <interrupt_handler> <+ SSA frame

L 0

. <heisenberg_hook> _,.:7 set
- block—eresume
bit

() call interrupt

-
()encluleresume]

o preload

pages

libheisenberg-hw

SSA frame gen_otp ‘)
SSA frame interrupt_handler

arows
down
-

Heisenberg-HW
¢ New hardware: Hook code pointer called upon enclave ERESUME
¢ Problem: Maximum SSA stack required

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements
Page Obliviousness

T-SGX
Defenses SGX-LAPD
Heisenberg
unprot. | Heisenberg-HW Heisenberg-SW
Benchmark time | overhead #int. | overhead #aborts # commits
Fibo 714.052ms -4.57% 173 22.54% 1,544, 2,019,273
SHA512 10.087 s 1.56% 0 -34.43% 0 5

Performance
e TSX aborts cause significant performance hit, especially when system is
under heavy load

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Heisenberg [SP17]

(2) pre-load TLB

Y
TLB

= r w x D linear addr. phys. addr.
c e

®enclu[eenter]/ E >1110i1:0: 0x1230 0000 ; 0x0134 0000

enclu[eresume] n +om [11:0 :1:0: 0x1231 0000 | 0x0527 0000

i
o L |1111 7011} 0x1232 0000 | 0x0403 0000
2 5 [F1i170:1} 0x1233 0000 | 0x1310 0000
c : 11101} 0x12340000: 0x4010 0000
@ R
SO
@
<
=

Limitations
¢ Requires knowledge of TLB implementation
e Only part of a solution when enclaves are larger than SGX PRM

57 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Conclusion

58 /75

¢ #PF and #PF-less side channels are still an open problem
¢ What happens when an enclave is larger than SGX PRM?
e We probably need:

* New hardware features

® Language support

Q.

Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Requirements

Page Obliviousness
T-SGX

SGX-LAPD
Heisenberg

Defenses

Thank you!

Thank you! Questions?

@raoul_strackx

59 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Problem Statement

Research Question

“Can we leverage the segmentation unit
to extract sensitive enclave data?”

logical address—=~segmentation unit— paging unit —>— 7 'SG)'(checks 7—>physica| address
general protection page fault (#PF) page fault (#PF)
fault (#GP)

60 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background: Segmentation

Segmentation in 32-bit mode

e Maps variable-length segments logical
address space

¢ Many different segments

® %CS (code) °* %ES
® %DS (data) * %FS
® %SS (stack) °* %GS

e G=1,size =1 Byteto 1 MB, 1 Byte incr.
e G=0,size=4KBto4 GB, 4 KB incr.

61 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background: Segmentation

Segmentation in 32-bit mode

e Maps variable-length segments logical

dd 31 242322212019 161514 1312 11 8 7 0
address space ‘ T 1T
Base 31:24 G|/|L|v| Limit |P| P [s| Type Base 23:16 4
I . B [L| 19:16 L
* Many different segments: - -
‘ Base Address 15:00 Segment Limit 15:00 0

® %CS (code) * %ES
L — 64-bit code segment (IA-32e mode only)

[) O/O DS (data) [) O/O FS AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

° o/oSS (StaCk) Y O/OGS IéPL :g;?(aiztic:;privi\ege level

LIMIT — Segment Limit

G = 1 ’ Size = 1 Byte to 1 MB’ 1 Byte inCr. 2 :gzgrcnrﬁ)r;(‘)f{;::?:)=system;1=code or data)
. . TYPE — Segment type
G =0, size =4 KB to 4 GB, 4 KB incr.

61 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Background: Segmentation

Interaction Between Segmentation and Intel SGX

* “enclaves abide by all segmentation policies set up by the OS” [Int18]
e but additional security measures:

® Segment base of %CS, %DS, %SS and %ES must be 0x00000000

® Segment selectors/descriptors of %FS and %GS are save/restored on enclave
boundaries

° Segment limits of %CS, %DS, %SS and %ES can still be set

logical address—=segmentation unit— paging unit ﬁ‘ " SGX checks > physical address

Y Y a Y

general protection page fault (#PF) page fault (#PF)
fault (#GP)

62 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Proof of Concept

Attack Model

Let’'s assume:
e 32-bit enclave
e microcode version Oxba (April 9th, 2017) or older
e kernel-level attacker
e (focus on 4 KiB granular accesses now)

63 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Proof-of-Concept

64 /75

Proof of Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)

3 handle_candidate_a();

4 else

5 handle_candidate_b();

6 handle_total_votes();

7 return;

8}

9
10void handle_candidate_a() {...}
11
12// limit!
13 void handle_candidate_b() {...}
14

15 void handle_total_votes() {...}

vote

handle candidate_a

’ handle candidate b

’ handle total votes ‘

Raoul Strackx

#PF-based Attacks against Intel SGX D | Strl N _t

Proof of Concept

Proof-of-Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
handle_candidate_b();

5

6 handle_total_votes(); VIR

7 return;

8 handle candidate_a

=5 . = = s s s ss=sat= ® limit
10void handle_candidate_a() {...} ’ handle candidate_b

11

12/ _imit! . ’ handle total votes

13 void handle_candidate_b() {...} = =

14

15void handle_total_votes() {...}

e yote==B —
e yote==A —

64 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Proof-of-Concept

64 /75

Proof of Concept

1 void vote(enum candidate c) {
if (c == candidate_a)
handle_candidate_a();
else
handle_candidate_b();
handle_total_votes();
return;

ONO O A WN

}

9

10 void handle_candidate_a() {...}
11

12// limit!
13 void handle_candidate_b() {...}
14

15void handle_total_votes() {...}

vote

handle candidate_a

’ handle total votes

e vote == B — General Protection (#GP) fault

e yote ==A —

Raoul Strackx

#PF-based Attacks against Intel SGX

OistriN=t

Proof-of-Concept

64 /75

Proof of Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)

3 handle_candidate_a();

4 else

5 handle_candidate_b();

6 handle_total_votes();

7 return;

8}

9
10void handle_candidate_a() {...}
11
12// limit!
13 void handle_candidate_b() {...}
14
15void handle_total_votes() {...}

vote

handle candidate_a

’ handle candidate b

’ handle total votes

e vote == B — General Protection (#GP) fault
¢ vote == A — General Protection (#GP) fault!

Raoul Strackx

#PF-based Attacks against Intel SGX

OistriN=t

Proof-of-Concept

Proof of Concept

1 void vote(enum candidate c) {
if (c == candidate_a)
handle_candidate_a();
else
handle_candidate_b();
handle_total_votes();
return;
}
9
10void handle_candidate_a() {...}
11
12// limit!
13 void handle_candidate_b() {...}
14
15void handle_total_votes() {...}

0N U RN

vote

handle candidate_a

’ handle candidate b

’ handle total votes

We need a second information channel!

64 /75

Raoul Strackx

#PF-based Attacks against Intel SGX

OistriN=t

Proof of Concept

SGX-Step

Enclave @ IRQ

Single-stepping through an
enCIaVe [VBPS1 7] @AEX

® Precisely configures APIC timer

while true do
INST
INST
INST

(6) ERESUME

INST
endwh

e Starts the enclave

v \ (EDBGRD)
* Enclave exits immediately after the @ ol

i i i apic_timer_interrupt k3 IRET Kernel
first instruction ®

65 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Proof of Concept

Proof-of-Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)

3 handle_candidate_a();

4 else

5 handle_candidate_b();

6 handle_total_votes();

7

8

return;

} handle candidate a

|
9 |
|

10 void handle_candidate_a() {...} handle_candidate b ‘
11void handle_candidate_b() {...}
{

12void handle_total_votes() {...}

handle total votes

e Track vote function

* Schedule APIC interrupt +
extend limit ® vote ==B —

e Observe execution path * vote == A —

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Proof of Concept

Proof-of-Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)

3 handle_candidate_a();

4 else

5 handle_candidate_b();

6

7

8

vote
handle_total_votes();
} return; handle candidate_a
s | e ® limit
10 void handle_candidate_a() {...} ’ handle_candidate b ‘
11 void handle_candidate_b() {...}
12 void handle_total_votes() {...} ’ handle total_votes
e Track vote function
e Schedule APIC interrupt +
extend limit * vote==B —
e Observe execution path * vote == A —

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Proof of Concept

Proof-of-Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)

3 handle_candidate_a();

4 else

5 handle_candidate_b();

6

7

8

vote
handle_total_votes();
} return; handle candidate_a
s | e ® limit
10 void handle_candidate_a() {...} ’ handle_candidate b ‘
11 void handle_candidate_b() {...}
12 void handle_total_votes() {...} ’ handle total_votes
® Track vote function
e Schedule APIC interrupt +
extend limit e vote == B — #GP fault
e Observe execution path * vote == A —

66 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Proof-of-Concept

66 /75

Proof of Concept

1 void vote(enum candidate c) {
2 if (c == candidate_a)
3 handle_candidate_a();
4 else
5 handle_candidate_b();
6 handle_total_votes();
7 return;
8}
9
10 void handle_candidate_a() {...}
11void handle_candidate_b() {...}
12void handle_total_votes() {...}

vote

handle candidate_a

’ handle total votes

e Track vote function

e Schedule APIC interrupt +
extend limit

e Observe execution path

Raoul Strackx

e vote == B — #GP fault
e yote == A — AEX!

#PF-based Attacks against Intel SGX

OistriN=t

Extracting Instruction Sizes

logical address—)—segmentation unit— pag|ng unit Lei SGX Checks V%physwcal address
general protection page fault (#PF) page fault (#PF)
fault (#GP)

What happens when we combine Paging/Segmentation attacks?

67 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Extracting Instruction Sizes

Attack Model

Let’s assume:
e Enclave is relocatable
e Code is within first 1 MiB of enclave
® microcode version Oxba (April 9th, 2017) or older
e user-level attacker

68 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Extracting Instruction Sizes

Combining Segmentation/Paging units

Page Access 7 Yes

* %CS LINMIT

EIP

OK!

69 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Extracting Instruction Sizes

Combining Segmentation/Paging units

Page Access ? Yes = %CS LIMIT Page Access ? Yes

* %CS LIMIT *

EIP EIP

OK! #GPq

69 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Extracting Instruction Sizes

Combining Segmentation/Paging units

Page Access 7 Yes %CS LIMIT Page Access 7 Yes

* %CS LIMIT *

EIP EIP
OK! #GPq

%CS LIMIT Page Access ? Yes

EIP

#GP,
69 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Extracting Instruction Sizes

Combining Segmentation/Paging units

Page Access 7 Yes %CS LIMIT Page Access 7 Yes

* %CS LIMIT *

EIP EIP
OK! #GPq

%CS LIMIT Page Access ? Yes %CS LIMIT Page Access ? No

EIP EIP

#GP, #PF
69 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Proof of Concept
Extracting Instruction Sizes

Combining Segmentation/Paging units

eip < limit page access rights (eip + inst size) < limit \ Fault type
X - - #GP4
v v X #GPo
v X - #PF

70 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Extracting Instruction Sizes

Can we Extract Instruction Sizes?

| eip rwx | eip rwx | eip - | eip -
A 4 A4 Fault A4 A 4
3 Byte ERESUME 4cp, Handler ERESUME soF
Instruction 2 —_—
A A A A
[timit [Timit [timit [limit
‘ eip rwx Executed! eip ‘ rwx eip l — eip} —
L2 Y Fault I Y Y
2 Byte ERESUME 4cp, Bandler ERESUME scp
Instruction 1 — 1
A A A A
[timit [timit [timit limit
71 /75 Raoul Strackx #PF-based Attacks against Intel SGX DIStI‘I N _t

Mitigations

Mitigations
We observed something interesting:
version release date CPUSVN vulnerable
Ox1E unknown 020202f£££££00000000000000000000 Yes
Ox2E unknown 020202f££££££00000000000000000000 Yes
Ox9E unknown 020202f£££££00000000000000000000 Yes
Ox4A unknown 020202f££££££00000000000000000000 Yes
Ox8A unknown 020202f£££££00000000000000000000 Yes
0xBA April 9th, 2017 020202f££f£££00000000000000000000 No
0xGC2 November 16th, 2017 020702f£f££££00000000000000000000 No

— Intel silently patched this vulnerability

72 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Mitigations

What changed!?

¢ Not yet incorporated in the manual — based on observations!

¢ Placing any segment limit within enclave — #GP
¢ Placing limit below enclave base:

%CS: #GP (used during enclave (re-)entry)
%DS: #GP (used during enclave (re-)entry)
%ES: #GP when used! [Gys18]

%SS: #GP when used! [Gys18]

%FS: OK (overwritten during enclave (re-)entry)
%GS: OK (overwritten during enclave (re-)entry)

73 /75 Raoul Strackx #PF-based Attacks against Intel SGX

OistriN=t

Mitigations

References |

74 /75

[

=) =) E =)

J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.

Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In 26th USENIX Security Symposium (USENIX Security 17), pp. 1041-1056, Vancouver, BC, 2017. USENIX Association.

Y. Fu, E. Bauman, R. Quinonez, and Z. Lin.

S gx-l apd: Thwarting controlled side channel attacks via enclave verifiable page faults.
In International Symposium on Research in Attacks, Intrusions, and Defenses, pp. 357—-380. Springer, 2017

J. Gyselinck.

Segmentation-based side-channel attacks on enclaved execution.

Master’s thesis, KU Leuven, 2018

Intel.

Intel 64 and IA-32 Architectures Software Developer’s Manual — Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C and 3D, May 2018.

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.

Preventing page faults from telling your secrets.
In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, ASIACCS’16, pp. 317-328, New York, NY,
USA, 2016. ACM.

Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

Mitigations

References lI

@ M.-W. Shih, S. Lee, T. Kim, and M. Peinado.

T-SGX: Eradicating controlled-channel attacks against enclave programs.

In Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS 2017), February 2017
@ R. Strackx and F. Piessens.

The heisenberg defense: Proactively defending sgx enclaves against page-table-based side-channel attacks, 2017.

@ J. Van Bulck, F. Piessens, and R. Strackx.
Sgx-step: A practical attack framework for precise enclave execution control.
2017.

@ Y. Xu, W. Cui, and M. Peinado.

Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In 36th IEEE Symposium on Security and Privacy. |EEE, May 2015

75 /75 Raoul Strackx #PF-based Attacks against Intel SGX D | Stl‘l N _t

	Background
	Protected-Module Architectures
	A Generic Overview
	Isolation
	Key Derivation
	Intel SGX

	#PF and #PF-less Controlled Side-Channel Attacks
	Defenses
	Requirements
	Page Obliviousness
	T-SGX
	SGX-LAPD
	Heisenberg

	Appendix
	Problem Statement
	Background: Segmentation
	Attacks
	Proof of Concept
	Extracting Instruction Sizes

	Mitigations

