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• Glitches can be injected in chips using various techniques

• Hardware vulnerabilities are triggered in order to cause faults

• We can exploit devices without relying on software vulnerabilities

What are typical targets?
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Fault Injection Targets

• Most standard chips are vulnerable
• Incl. basic MCUs and (very) advanced SoCs

• Most standard architectures are affected
• i.e. ARM, MIPS, Intel, etc.

• Fast processing (> 1GHz) is not a show stopper
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Fault Injection Goals

• Bypassing security features
• e.g. debug interface protection, secure boot, etc.

• Hijacking control flow
• i.e. achieving arbitrary code execution

• Breaking cryptographic algorithms
• i.e. differential fault analysis (DFA) attacks
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Let’s attack Secure Boot!
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Why do we need secure boot?

Processor

Boot 
code
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Flash
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code

Kernel
ROM OTPSRAM

Secure boot assures integrity of code/data in flash!

Threat 1:
Hardware Hacker

Threat 2:
Malware
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Secure boot

• Authentication of loading images

• Root of trust embedded in hardware
• i.e. immutable code/data using read-only-memory (ROM)

• (optional): assure confidentiality by encrypting flash
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The real world is more complex!

ROM

U-Boot

Secure Monitor TEE OS TEE Apps

Boot finished!

Linux Apps

BLx

Linux Kernel

EL3 EL1 EL0

Secure World 

EL1 EL1 EL0

Non-Secure World

EL1 EL3

The chain can break at any stage. Earlier is better!

Higher privileges Lower privileges
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Breaking Secure Boot early

• Early boot stage run at the highest privilege
• e.g. unrestricted access

• Security features often not initialized yet
• e.g. access control

• Access assets that are not accessible after a certain stage
• e.g. ROM code and keys
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Why use Fault Injection on Secure Boot?

• Usually a small code base

• Limited attack surface

• Should be extensively reviewed

Software vulnerabilities not guaranteed to be present!
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Signature verification



How do we attack?
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Fault Injection Fault Model: “Instruction skipping.”

• Faults can cause “instructions not to be executed”

• Inaccurate but sufficient to think about attacks (and defenses)

• Widely adopted by academia and industry

• Useful for affecting the code flow

Cristofaro will dive much deeper into fault models!



Let’s use it to bypass Secure Boot!



Textbook Fault Injection Attack 1/4



Textbook Fault Injection Attack 2/4
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Textbook Fault Injection Attack 4/4

Complete bypass of Secure Boot!



Let’s attack something else…



Paper / Presentation / Video (2017)

https://www.riscure.com/uploads/2017/10/Riscure_Whitepaper_Escalating_Privileges_in_Linux_using_Fault_Injection.pdf
https://hardwear.io/document/niek-cristofaro-escalating-privileges-in-linux-using-fi-presentation-hardwareio.pdf
https://www.youtube.com/watch?v=4jsCiHQHgw0
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Target

• Fast and feature rich System-on-Chip (SoC)

• ARM Cortex-A9 (AArch32) @ ~ 1 GHz

• Ubuntu 14.04 LTS (fully patched)
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Application vs Kernel

We assume the attacker can execute 
code as user without privileges

The Kernel perform checks for 
security critical syscalls which will be 
the target for our attacks
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Attack #1: Mapping of arbitrary memory

1. Open /dev/mem using open syscall from userspace process

2. Bypass checks performed by Linux kernel using a glitch

3. Map arbitrary physical address in userspace

A successful glitch gives (unrestricted) access to Kernel memory!



Attack code for mapping arbitrary memory

• Code is running in user space

• Linux syscall: sys_open (0x5)
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Results for mapping arbitrary memory

• Performed 22118 experiments in 17 hours

• Success rate between 25.5 µs and 26.8 µs: 0.53%

• Kernel “pwned” every 10 minutes
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Attack #2: Popping a root shell directly

1. Set all CPU registers to 0 to increase success probability

2. Perform setresuid syscall to set process IDs to root

3. Bypass checks performed by Linux kernel using a glitch

4. Execute shell using system function

A successful glitch gives a shell with root privileges!



Attack code for popping a root shell directly

• Code is running in user space

• Linux syscall: setresuid (0xd0)
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Results for popping a root shell directly

• Performed 18968 experiments in 21 hours

• Success rate between 3.14 µs and 3.44 µs: 1.3%

• Root shell “popped” every 5 minutes



What about controlling the 
Program Counter (PC) in Kernel mode directly?!



What about controlling the 
Program Counter (PC) in Kernel mode directly?!

Paper / Presentation (2016)

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf
http://conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_2_1.pdf
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Attack #3: Controlling PC directly

1. Set all registers to a specific value (e.g. 0x41414141)

2. Execute random Linux system calls

3. Load an controlled value into the PC register using a glitch

A successful glitch will hijack the control flow!



Attack code for controlling PC directly

• Code running in userspace

• Linux syscall: initially random

• We found getgroups and prctl to be more effective
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Results for controlling PC directly

• Performed 12705 experiments in 14 hours

• Success rate between 2.2 µs and 2.65 µs: 0.63%

• Control of PC in Kernel mode gained every 10 minutes
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This is magic! Why does this work?

You will hear that in the next sessions…
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To conclude…

• Fault injection practical and available to the masses
(it will not go away)

• They can easily subvert typical software security models
(adjust your threat model) 

• Most standard devices are vulnerable
(factor in countermeasures from the start)



Thank you! Any questions?!


