
Session #2: Fault Injection Attacks

Niek Timmers (independent)

info@niektimmers.com / @tieknimmers / http://www.niektimmers.com/

mailto:info@niektimmers.com
https://twitter.com/tieknimmers
http://www.niektimmers.com/


Where did Albert leave us?



Where did Albert leave us?

• Glitches can be injected in chips using various techniques



Where did Albert leave us?

• Glitches can be injected in chips using various techniques

• Hardware vulnerabilities are triggered in order to cause faults



Where did Albert leave us?

• Glitches can be injected in chips using various techniques

• Hardware vulnerabilities are triggered in order to cause faults

• We can exploit devices without relying on software vulnerabilities



Where did Albert leave us?

• Glitches can be injected in chips using various techniques

• Hardware vulnerabilities are triggered in order to cause faults

• We can exploit devices without relying on software vulnerabilities

What are typical targets?



Fault Injection Targets



Fault Injection Targets

• Most standard chips are vulnerable
• Incl. basic MCUs and (very) advanced SoCs



Fault Injection Targets

• Most standard chips are vulnerable
• Incl. basic MCUs and (very) advanced SoCs

• Most standard architectures are affected
• i.e. ARM, MIPS, Intel, etc.



Fault Injection Targets

• Most standard chips are vulnerable
• Incl. basic MCUs and (very) advanced SoCs

• Most standard architectures are affected
• i.e. ARM, MIPS, Intel, etc.

• Fast processing (> 1GHz) is not a show stopper



Fault Injection Goals



Fault Injection Goals

• Bypassing security features
• e.g. debug interface protection, secure boot, etc.



Fault Injection Goals

• Bypassing security features
• e.g. debug interface protection, secure boot, etc.

• Hijacking control flow
• i.e. achieving arbitrary code execution



Fault Injection Goals

• Bypassing security features
• e.g. debug interface protection, secure boot, etc.

• Hijacking control flow
• i.e. achieving arbitrary code execution

• Breaking cryptographic algorithms
• i.e. differential fault analysis (DFA) attacks



Let’s attack something…



Let’s attack something…

Let’s attack Secure Boot!



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel
ROM OTPSRAM

DDR



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel
ROM OTPSRAM

DDR
1



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel

Boot 
code

ROM OTPSRAM

DDR
2 1



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel

Boot 
code

Kernel
ROM OTPSRAM

DDR
2 1

3



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel

Boot 
code

Kernel
ROM OTPSRAM

Threat 1:
Hardware Hacker

DDR
2 1

3



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel

Boot 
code

Kernel
ROM OTPSRAM

Threat 1:
Hardware Hacker

Threat 2:
Malware

DDR
2 1

3



Why do we need secure boot?

Processor

Boot 
code

System-on-Chip

Flash

Kernel

Boot 
code

Kernel
ROM OTPSRAM

Secure boot assures integrity of code/data in flash!

Threat 1:
Hardware Hacker

Threat 2:
Malware

DDR
2 1

3



Secure boot



Secure boot

• Authentication of loading images



Secure boot

• Authentication of loading images

• Root of trust embedded in hardware
• i.e. immutable code/data using read-only-memory (ROM)



Secure boot

• Authentication of loading images

• Root of trust embedded in hardware
• i.e. immutable code/data using read-only-memory (ROM)

• (optional): assure confidentiality by encrypting flash



The real world is more complex!



The real world is more complex!

ROM

U-Boot

Secure Monitor TEE OS TEE Apps

Boot finished!

Linux Apps

BLx

Linux Kernel

EL3 EL1 EL0

Secure World 

EL1 EL1 EL0

Non-Secure World

EL1 EL3

Higher privileges Lower privileges



The real world is more complex!

ROM

U-Boot

Secure Monitor TEE OS TEE Apps

Boot finished!

Linux Apps

BLx

Linux Kernel

EL3 EL1 EL0

Secure World 

EL1 EL1 EL0

Non-Secure World

EL1 EL3

The chain can break at any stage. Earlier is better!

Higher privileges Lower privileges



Breaking Secure Boot early



Breaking Secure Boot early

• Early boot stage run at the highest privilege
• e.g. unrestricted access



Breaking Secure Boot early

• Early boot stage run at the highest privilege
• e.g. unrestricted access

• Security features often not initialized yet
• e.g. access control



Breaking Secure Boot early

• Early boot stage run at the highest privilege
• e.g. unrestricted access

• Security features often not initialized yet
• e.g. access control

• Access assets that are not accessible after a certain stage
• e.g. ROM code and keys



Why use Fault Injection on Secure Boot?



Why use Fault Injection on Secure Boot?

• Usually a small code base



Why use Fault Injection on Secure Boot?

• Usually a small code base

• Limited attack surface



Why use Fault Injection on Secure Boot?

• Usually a small code base

• Limited attack surface

• Should be extensively reviewed



Why use Fault Injection on Secure Boot?

• Usually a small code base

• Limited attack surface

• Should be extensively reviewed

Software vulnerabilities not guaranteed to be present!



Fault injection setup



Fault injection setup



Fault injection setup



USB

Fault injection setup

Serial



Voltage

USB

Fault injection setup

Serial



Voltage

USB

Reset

Fault injection setup

Serial



Signature verification



How do we attack?



Fault Injection Fault Model: “Instruction skipping.”



Fault Injection Fault Model: “Instruction skipping.”

• Faults can cause “instructions not to be executed”



Fault Injection Fault Model: “Instruction skipping.”

• Faults can cause “instructions not to be executed”

• Inaccurate but sufficient to think about attacks (and defenses)



Fault Injection Fault Model: “Instruction skipping.”

• Faults can cause “instructions not to be executed”

• Inaccurate but sufficient to think about attacks (and defenses)

• Widely adopted by academia and industry



Fault Injection Fault Model: “Instruction skipping.”

• Faults can cause “instructions not to be executed”

• Inaccurate but sufficient to think about attacks (and defenses)

• Widely adopted by academia and industry

• Useful for affecting the code flow



Fault Injection Fault Model: “Instruction skipping.”

• Faults can cause “instructions not to be executed”

• Inaccurate but sufficient to think about attacks (and defenses)

• Widely adopted by academia and industry

• Useful for affecting the code flow

Cristofaro will dive much deeper into fault models!



Let’s use it to bypass Secure Boot!



Textbook Fault Injection Attack 1/4



Textbook Fault Injection Attack 2/4

CODE



Textbook Fault Injection Attack 3/4



Textbook Fault Injection Attack 4/4



Textbook Fault Injection Attack 4/4



Textbook Fault Injection Attack 4/4

Complete bypass of Secure Boot!



Let’s attack something else…



Paper / Presentation / Video (2017)

https://www.riscure.com/uploads/2017/10/Riscure_Whitepaper_Escalating_Privileges_in_Linux_using_Fault_Injection.pdf
https://hardwear.io/document/niek-cristofaro-escalating-privileges-in-linux-using-fi-presentation-hardwareio.pdf
https://www.youtube.com/watch?v=4jsCiHQHgw0


Target



Target

• Fast and feature rich System-on-Chip (SoC)



Target

• Fast and feature rich System-on-Chip (SoC)

• ARM Cortex-A9 (AArch32) @ ~ 1 GHz



Target

• Fast and feature rich System-on-Chip (SoC)

• ARM Cortex-A9 (AArch32) @ ~ 1 GHz

• Ubuntu 14.04 LTS (fully patched)



Application vs Kernel



Application vs Kernel

We assume the attacker can execute 
code as user without privileges



Application vs Kernel

We assume the attacker can execute 
code as user without privileges

The Kernel perform checks for 
security critical syscalls which will be 
the target for our attacks



Attack #1: Mapping of arbitrary memory



Attack #1: Mapping of arbitrary memory

1. Open /dev/mem using open syscall from userspace process



Attack #1: Mapping of arbitrary memory

1. Open /dev/mem using open syscall from userspace process

2. Bypass checks performed by Linux kernel using a glitch



Attack #1: Mapping of arbitrary memory

1. Open /dev/mem using open syscall from userspace process

2. Bypass checks performed by Linux kernel using a glitch

3. Map arbitrary physical address in userspace



Attack #1: Mapping of arbitrary memory

1. Open /dev/mem using open syscall from userspace process

2. Bypass checks performed by Linux kernel using a glitch

3. Map arbitrary physical address in userspace

A successful glitch gives (unrestricted) access to Kernel memory!



Attack code for mapping arbitrary memory

• Code is running in user space

• Linux syscall: sys_open (0x5)



Results for mapping arbitrary memory



Results for mapping arbitrary memory

• Performed 22118 experiments in 17 hours



Results for mapping arbitrary memory

• Performed 22118 experiments in 17 hours

• Success rate between 25.5 µs and 26.8 µs: 0.53%



Results for mapping arbitrary memory

• Performed 22118 experiments in 17 hours

• Success rate between 25.5 µs and 26.8 µs: 0.53%

• Kernel “pwned” every 10 minutes



What about popping a root shell directly?



Attack #2: Popping a root shell directly



Attack #2: Popping a root shell directly

1. Set all CPU registers to 0 to increase success probability



Attack #2: Popping a root shell directly

1. Set all CPU registers to 0 to increase success probability

2. Perform setresuid syscall to set process IDs to root



Attack #2: Popping a root shell directly

1. Set all CPU registers to 0 to increase success probability

2. Perform setresuid syscall to set process IDs to root

3. Bypass checks performed by Linux kernel using a glitch



Attack #2: Popping a root shell directly

1. Set all CPU registers to 0 to increase success probability

2. Perform setresuid syscall to set process IDs to root

3. Bypass checks performed by Linux kernel using a glitch

4. Execute shell using system function



Attack #2: Popping a root shell directly

1. Set all CPU registers to 0 to increase success probability

2. Perform setresuid syscall to set process IDs to root

3. Bypass checks performed by Linux kernel using a glitch

4. Execute shell using system function

A successful glitch gives a shell with root privileges!



Attack code for popping a root shell directly

• Code is running in user space

• Linux syscall: setresuid (0xd0)



Results for popping a root shell directly



Results for popping a root shell directly

• Performed 18968 experiments in 21 hours



Results for popping a root shell directly

• Performed 18968 experiments in 21 hours

• Success rate between 3.14 µs and 3.44 µs: 1.3%



Results for popping a root shell directly

• Performed 18968 experiments in 21 hours

• Success rate between 3.14 µs and 3.44 µs: 1.3%

• Root shell “popped” every 5 minutes



What about controlling the 
Program Counter (PC) in Kernel mode directly?!



What about controlling the 
Program Counter (PC) in Kernel mode directly?!

Paper / Presentation (2016)

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf
http://conferenze.dei.polimi.it/FDTC16/shared/FDTC-2016-session_2_1.pdf


Attack #3: Controlling PC directly



Attack #3: Controlling PC directly

1. Set all registers to a specific value (e.g. 0x41414141)



Attack #3: Controlling PC directly

1. Set all registers to a specific value (e.g. 0x41414141)

2. Execute random Linux system calls



Attack #3: Controlling PC directly

1. Set all registers to a specific value (e.g. 0x41414141)

2. Execute random Linux system calls

3. Load an controlled value into the PC register using a glitch



Attack #3: Controlling PC directly

1. Set all registers to a specific value (e.g. 0x41414141)

2. Execute random Linux system calls

3. Load an controlled value into the PC register using a glitch

A successful glitch will hijack the control flow!



Attack code for controlling PC directly

• Code running in userspace

• Linux syscall: initially random

• We found getgroups and prctl to be more effective



Results for controlling PC directly



Results for controlling PC directly

• Performed 12705 experiments in 14 hours



Results for controlling PC directly

• Performed 12705 experiments in 14 hours

• Success rate between 2.2 µs and 2.65 µs: 0.63%



Results for controlling PC directly

• Performed 12705 experiments in 14 hours

• Success rate between 2.2 µs and 2.65 µs: 0.63%

• Control of PC in Kernel mode gained every 10 minutes



This is magic! Why does this work?



This is magic! Why does this work?

You will hear that in the next sessions…



To conclude…



To conclude…

• Fault injection practical and available to the masses
(it will not go away)



To conclude…

• Fault injection practical and available to the masses
(it will not go away)

• They can easily subvert typical software security models
(adjust your threat model) 



To conclude…

• Fault injection practical and available to the masses
(it will not go away)

• They can easily subvert typical software security models
(adjust your threat model) 

• Most standard devices are vulnerable
(factor in countermeasures from the start)



Thank you! Any questions?!


